Advertisement

Microsystem Technologies

, Volume 25, Issue 2, pp 423–430 | Cite as

The piezoresistance of a device with polyphenylenevinylene derivative PSS-PPV film

  • Jie Li
  • Yu-xuan Hou
  • Yu-yan Wang
  • Fei Ye
  • Gao-yu ZhongEmail author
Technical Paper
  • 77 Downloads

The mechanical and electrical characteristics of poly[1-methoxy-4-(3-propyloxy-heptaisobutyl-PSS)-2,5-phenylenevinylene] (PSS-PPV) film were studied in this work. The loading curves and Young’s modulus of PSS-PPV film were measured with nanoindentation tests. The device ITO/PSS-PPV (75 nm)/Al (100 nm) was fabricated and measured to obtain the current–voltage (I–V) and current-time (I–T) curves under different pressures ranging in 0–163 kPa. The device demonstrated high sensitivity, good stability, and nice repeatability. The piezoresistance coefficient can even reach 2.0 × 10−3 Pa−1 at 0.2 V and 111 kPa. The time and charges required to form a stable build-in electric field in the device under different pressures were analyzed using a high-frequency square-wave voltage. It is deduced that the applied pressure not only tightens the PSS-PPV film but also improves its conductance. This property makes PSS-PPV film possess prospect in pressure sensing applications, though it still suffers from partly slow recovering after considerable compression.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant 51373036 and 11134002.

References

  1. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRefGoogle Scholar
  2. Amjadi M, Kyung K, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26(11):1678–1698CrossRefGoogle Scholar
  3. Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97(3):513–552CrossRefGoogle Scholar
  4. Braun D, Heeger AJ (1991) Visible-light emission from semiconducting polymer diodes. Appl Phys Lett 58(18):1982–1984CrossRefGoogle Scholar
  5. Cao JX, Gong XG, Wu RQ (2007a) Giant piezoresistance and its origin in Si(111) nanowires: first-principles calculations. Phys Rev B 75(23):233302CrossRefGoogle Scholar
  6. Cao YP, Dao M, Lu J (2007b) A precise correcting method for the study of the superhard material using nanoindentation tests. J Mater Res 22(5):1255–1264CrossRefGoogle Scholar
  7. Chandrasekhar M, Guha S, Graupner W (2001) Squeezing organic conjugated molecules—what does one learn? Adv Mater 13(8):613CrossRefGoogle Scholar
  8. Cheng L, Xia X, Yu W, Scriven LE, Gerberich WW (2000) Flat-punch indentation of viscoelastic material. J Polym Sci Polym Phys 38(1):10–22CrossRefGoogle Scholar
  9. Choong C, Shim M, Lee B, Jeon S, Ko D, Kang T, Bae J, Lee SH, Byun K, Im J, Jeong YJ, Park CE, Park J, Chung U (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458CrossRefGoogle Scholar
  10. Cotton DPJ, Graz IM, Lacour SP (2009) A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens J 9(12):2008–2009CrossRefGoogle Scholar
  11. Dai W, Zhang B, Kang Y, Chen H, Zhong G, Li Y (2013) The stress-affected carrier injection and transport in organic semiconductor devices. J Phys D Appl Phys 46:38510338CrossRefGoogle Scholar
  12. Deng C, Pan L, Li C, Fu X, Cui R, Nasir H (2018) Helical gold nanotube film as stretchable micro/nanoscale strain sensor. J Mater Sci 53(3):2181–2192CrossRefGoogle Scholar
  13. Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609CrossRefGoogle Scholar
  14. Dong B, Lu N, Zelsmann M, Kehagias N, Fuchs H, Sotomayor Torres CM, Chi LF (2006) Fabrication of high-density, large-area conducting-polymer nanostructures. Adv Funct Mater 16(15):1937–1942CrossRefGoogle Scholar
  15. Furukawa T, Date M, Ohuchi M, Chiba A (1984) Ferroelectric switching characteristics in a copolymer of vinylidene fluoride and trifluorethylene. J Appl Phys 56(5):1481–1486CrossRefGoogle Scholar
  16. Graz IM, Cotton DPJ, Lacour SP (2009) Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl Phys Lett 94:0719027CrossRefGoogle Scholar
  17. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z (2013) 25th Anniversary Article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038CrossRefGoogle Scholar
  18. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1(1):42–46MathSciNetCrossRefGoogle Scholar
  19. Hou W, Gao L, Tian Y, Yan W, Hou Y, Li J, Zhong G (2017) Stress-induced variation of MDMO-PPV film thickness and resistance. Synth Met 226:113–118CrossRefGoogle Scholar
  20. Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895CrossRefGoogle Scholar
  21. Jiang ZY, Cao XA (2010) Stress-induced current and luminescence modulations in an organic light-emitting device. Appl Phys Lett 97(20):203304CrossRefGoogle Scholar
  22. Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev 29(1):64–70CrossRefGoogle Scholar
  23. Kim BY, Rutka JT, Chan WC (2011a) Nanomedicine. N Engl J Med 363(25):2434–2443CrossRefGoogle Scholar
  24. Kim FS, Ren G, Jenekhe SA (2011b) One-dimensional nanostructures of π-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23(3):682–732CrossRefGoogle Scholar
  25. Li Y, Cheng XY, Leung MY, Tsang J, Tao XM, Yuen MCW (2005) A flexible strain sensor from polypyrrole-coated fabrics. Synth Met 155(1):89–94CrossRefGoogle Scholar
  26. Li M, Li H, Zhong W, Zhao Q, Wang D (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6(2):1313–1319CrossRefGoogle Scholar
  27. Li Z, Ma G, Ge R, Qin F, Dong X, Meng W, Liu T, Tong J, Jiang F, Zhou Y, Li K, Min X, Huo K, Zhou Y (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed 55(3):979–982CrossRefGoogle Scholar
  28. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792CrossRefGoogle Scholar
  29. Maheshwari V, Saraf RF (2006) High-resolution thin-film device to sense texture by touch. Science 312(5779):1501–1504CrossRefGoogle Scholar
  30. Maheshwari V, Saraf R (2008) Tactile devices to sense touch on a par with a human finger. Angew Chem Int Ed 47(41):7808–7826CrossRefGoogle Scholar
  31. Malliaras GG, Salem JR, Brock PJ, Scott C (1998) Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys Rev B 58(20):13411–13414CrossRefGoogle Scholar
  32. Mascaro SA, Asada HH (2004) Measurement of finger posture and three-axis fingertip touch force using fingernail sensors. IEEE Trans Robot Autom 20(1):26–35CrossRefGoogle Scholar
  33. Milne JS, Rowe ACH, Arscott S, Renner C (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:22680222CrossRefGoogle Scholar
  34. Nunes Pereira J, Vieira P, Ferreira A, Paleo AJ, Rocha JG, Lanceros-Mendez S (2012) Piezoresistive effect in spin-coated polyaniline thin films. J Polym Res 19:98152Google Scholar
  35. O’Connor B, Chan EP, Chan C, Conrad BR, Richter LJ, Kline RJ, Heeney M, McCulloch I, Soles CL, DeLongchamp DM (2010) Correlations between mechanical and electrical properties of polythiophenes. ACS Nano 4(12):7538–7544CrossRefGoogle Scholar
  36. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  37. Sanli A, Benchirouf A, Mueller C, Kanoun O (2017) Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators A Phys 254:61–68CrossRefGoogle Scholar
  38. Schuetrumpf J, Zhukov S, Genenko YA, von Seggern H (2012) Polarization switching dynamics by inhomogeneous field mechanism in ferroelectric polymers. J Phys D Appl Phys 45:16530116Google Scholar
  39. Song Y, Chen H, Su Z, Chen X, Miao L (2017) Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small 13:1702091CrossRefGoogle Scholar
  40. Stassi S, Cauda V, Canavese G, Pirri C (2014) Flexible tactile sensing based on piezoresistive composites: a review. Sensors Basel 14(3):5296–5332CrossRefGoogle Scholar
  41. Tahk D, Lee HH, Khang D (2009) Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42(18):7079–7083CrossRefGoogle Scholar
  42. Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832CrossRefGoogle Scholar
  43. Tweedie CA, Van Vliet KJ (2006) Contact creep compliance of viscoelastic materials via nanoindentation. J Mater Res 21(6):1576–1589CrossRefGoogle Scholar
  44. Wang J, Karmakar RS, Lu Y, Wu M, Wei K (2016) Nitrogen plasma surface modification of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films to enhance the piezoresistive pressure-sensing properties. J Phys Chem C 120(45):25977–25984CrossRefGoogle Scholar
  45. Wichmann MHG, Buschhorn ST, Gehrmann J, Schulte K (2009) Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys Rev B 80:24543724CrossRefGoogle Scholar
  46. Zhao S, Li J, Cao D, Zhang G, Li J, Li K, Yang Y, Wang W, Jin Y, Sun R, Wong C (2017) Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Int 9(14):12147–12164CrossRefGoogle Scholar
  47. Zhong GY, Zhang YQ, Cao XA (2009) Conjugated polymer films for piezoresistive stress sensing. IEEE Electr Device Lett 30(11):1137–1139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations