Microsystem Technologies

, Volume 25, Issue 1, pp 257–264 | Cite as

The properties of free-standing epoxy polymer multi-mode optical waveguides

  • Václav PrajzlerEmail author
  • Miloš Neruda
  • Petr Jašek
  • Pavla Nekvindová
Technical Paper


The paper reports on the fabrication and characterisation of free-standing multimode optical epoxy polymer waveguides consisting of a core made of EpoCore and EpoClad polymer cladding and cover protection layers. The 50 × 50 μm2 rectangular waveguides are intended for short-reach optical interconnection and optimised for an operating wavelength of 850 nm. The waveguides of the proposed shapes were fabricated by a standard photolithography process on a silicon substrate provided with a Poly(vinyl alcohol) thin layer. The free-standing structure was then achieved by peeling the deposited EpoClad/EpoCore/EpoClad structures of that substrate. The optical scattering losses of the created planar waveguides, measured by the fibre probe technique at 632.8 and 964 nm, were 0.30 dB cm−1 at 632.8 nm and 0.17 dB cm−1 at 964 nm. Propagation optical loss measurements for rectangular waveguides were performed by the cut-back method and the best samples had optical losses below 0.55 dB cm−1 at 850 and 1310 nm.



This work was supported by the Epsilon Programme of the Technology Agency of the Czech Republic, Project no. TH01020276, and by the CTU Grant no. SGS17/188/OHK3/3T/13.


  1. Bamiedakis N, Chen J, Penty RV, White IH (2014) Bandwidth studies on multimode polymer waveguides for 25 Gb/s optical interconnects. IEEE Photon Technol Lett 26:2004–2007CrossRefGoogle Scholar
  2. Booth BL (1989) Low-loss channel waveguides in polymers. J Lightwave Technol 7:1445–1453CrossRefGoogle Scholar
  3. Bruck R, Muellner P, Kataeva N, Koeck A, Trassl S, Rinnerbauer V, Schmidegg K, Hainberger R (2013) Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process. Appl Opt 52:4510–4514CrossRefGoogle Scholar
  4. Choi C, Lin L, Liu Y, Choi J, Wang L, Haas D, Magera J, Chen RT (2004) Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. J Lightwave Technol 22:2168–2176CrossRefGoogle Scholar
  5. Eldada L (2004) Optical communication components. Rev Sci Inst 75:575–593CrossRefGoogle Scholar
  6. Elmogi A, Bosman E, Missinne J, van Steenberge G (2016) Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography. Opt Mater 52:26–31CrossRefGoogle Scholar
  7. Horvath R, Lindvold LR, Larsen NB (2003) Fabrication of all-polymer freestanding waveguides. J Micromech Microeng 13:419–424CrossRefGoogle Scholar
  8. Huang YY, Paloczi GT, Poon JKS, Yariv A (2004) Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices. Adv Mater 16:44–48CrossRefGoogle Scholar
  9. Ibrahim MH, Lee SY, Chin MK, Kassim NM, Mohammad AB (2007) Single mode optical waveguides based on photodefinable benzocyclobutene (BCB 4024-40) polymer. Mic Opt Tech Lett 49:479–481CrossRefGoogle Scholar
  10. Khanarian G, Celanese H (2001) Optical properties of cyclic olefin copolymers. Opt Eng 40:1024–1029CrossRefGoogle Scholar
  11. Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL (2014) 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. Adv Mater 26:532–568CrossRefGoogle Scholar
  12. Li RZ, Zhang LJ, Hu W, Wang LD, Tang J, Zhang T (2016) Flexible TE-pass polymer waveguide polarizer with low bending loss. IEEE Photon Technol Lett 28:2601–2604CrossRefGoogle Scholar
  13. Ma H, Jen AKY, Dalton LR (2002) Polymer-based optical waveguides: materials, processing, and devices. Adv Mater 14:1339–1365CrossRefGoogle Scholar
  14. Metricon Corporation (2018). Accessed 18 May 2018
  15. Micro resist technology GmbH: datasheet (2018).
  16. Nordt S, Pasch H, Radke W (2010) Method development for epoxy resin analysis. Microsyst Technol 16:1347–1351CrossRefGoogle Scholar
  17. Nourshargh N, Starr EM, Fox NI, Jones SG (1985) Simple technique for measuring attenuation of integrated optical waveguides. El Lett 21:818–820CrossRefGoogle Scholar
  18. Paloczi GT, Huang Y, Yariv A (2003) Free-standing all-polymer microring resonator optical filter. El Lett 39:1650–1651CrossRefGoogle Scholar
  19. Prajzler V, Klapuch J, Lyutakov O, Huttel I, Spirkova J, Nekvindova P, Jerabek V (2011) Design, fabrication and properties of rib poly(methylmethacrylimide) optical waveguides. Radioengineering 20:479–485Google Scholar
  20. Prajzler V, Nekvindova P, Hyps P, Lyutakov O, Jerabek V (2014) Flexible polymer planar optical waveguides. Radioengineering 23:776–782Google Scholar
  21. Prajzler V, Nekvindova P, Hyps P, Jerabek V (2015a) Properties of the optical planar polymer waveguides deposited on printed circuit boards. Radioengineering 24:442–448CrossRefGoogle Scholar
  22. Prajzler V, Nekvindova P, Hyps P, Jerabek V (2015b) Optical properties of polymer planar waveguides deposited on flexible foils. J Opt Adv Mater 17:1597–1602Google Scholar
  23. Prajzler V, Hyps P, Mastera R, Nekvindova P (2016) Properties of siloxane based optical waveguides deposited on transparent paper and foil. Radioengineering 25:230–235CrossRefGoogle Scholar
  24. Prajzler V, Nekvindova P, Spirkova J, Novotny M (2017a) The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J Mater Sci Mater Elect 28:7951–7961CrossRefGoogle Scholar
  25. Prajzler V, Neruda M, Nekvindova P, Mikulik P (2017b) Properties of multimode optical epoxy polymer waveguides deposited on silicon and TOPAS substrate. Radioengeneering 26:10–15CrossRefGoogle Scholar
  26. Prajzler V, Neruda M, Nekvindova P (2018) Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides. J Mater Sci Mater Elect 29:5878–5884CrossRefGoogle Scholar
  27. Rabiei P, Steier WH, Zhang C, Dalton LR (2002) Polymer micro-ring filters and modulators. J Lightwave Technol 20:1968–1975CrossRefGoogle Scholar
  28. Tekin T, Pleros N, Pitwon R, Hakansson A (2016) Optical interconnects for data centers, 1st edn. Woodhead, Sawston. ISBN 9780081005125Google Scholar
  29. Wong WH, Liu KK, Chan KS, Pun EYB (2006) Polymer devices for photonics applications. J Cryst Grow 288:100–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Václav Prajzler
    • 1
    Email author
  • Miloš Neruda
    • 1
  • Petr Jašek
    • 1
  • Pavla Nekvindová
    • 2
  1. 1.Department of Microelectronics, Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic
  2. 2.Department of Inorganic Chemistry, Faculty of Chemical TechnologyInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations