Microsystem Technologies

, Volume 24, Issue 12, pp 4729–4735 | Cite as

Asymmetric RF MEMS resonant switch for high speed switching applications

  • Sara Rizehbandi
  • Midia Reshadi
  • Masoud Baghelani
  • Ahmad KhademzadehEmail author
Technical Paper


Although micro-electro-mechanical switches are beneficial in small sizes, high levels of power handling, compatibility with CMOS process, wide bandwidth and zero power consumption, unfortunately their slow dynamics and specifically their switching time is still remains as an issue. This problem becomes even more critical in high speed switching systems like power converters, network on chip, high speed switching power amplifiers in multichannel, multi standard transceivers and etc. This paper presents a resonant switch based on a resonating structure vibrating at GHz frequencies. The switching time of the proposed resonating switch is less than 100 ps with 5 V of excitation voltage. Based on its intrinsic asymmetry, the proposed switch doesn’t require various air gaps and therefore its fabrication process is much simpler.



  1. Afrang S, Samandari K, Rezazadeh G (2017) A small size Ka band six-bit DMTL phase shifter using new design of MEMS switch. Microsyst Technol 23(6):1853–1866CrossRefGoogle Scholar
  2. Attaran A, Rashidzadeh R (2015) Ultra low actuation voltage RF MEMS switch. Micro Nano Syst Lett 3(1):7CrossRefGoogle Scholar
  3. Bacon P, Fischer D, Lourens R (2014) Overview of RF switch technology and applications. Microw J 57(7):76–88Google Scholar
  4. Baghelani M, Ghavifekr HB, Ebrahimi A (2011) Analysis and suppression of spurious modes of the ring shape anchored RF MEMS contour mode disk resonator. Microsyst Technol 17(10–11):1599CrossRefGoogle Scholar
  5. Baghelani M, Ghavifekr HB, Ebrahimi A (2013) MEMS based oscillator for UHF applications with automatic amplitude control. Microelectron J 44(4):292–300CrossRefGoogle Scholar
  6. Baghelani M, Lan D, Wang J (2017) Design of spurious mode-free elliptical ring resonators. Microsyst Technol 23(8):3635–3644CrossRefGoogle Scholar
  7. Bakri-Kassem M, Mansour RR (2015) High power latching RF MEMS switches. IEEE Trans Microw Theory Tech 63(1):222–232CrossRefGoogle Scholar
  8. Banerjee A, Pandey SS, Banerjee N, Hasan N, Mastrangelo CH (2015) A milli-volt triggered MEMS paddle switch. In: SENSORS, 2015 IEEE. IEEE, pp 1–4Google Scholar
  9. Bansal D, Kumar A, Sharma A, Kumar P, Rangra KJ (2014) Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst Technol 20(2):337–340CrossRefGoogle Scholar
  10. Beaulieu PO, Alameh AH, Menard M, Nabki F (2016) A 360 V high voltage reconfigurable charge pump in 0.8 μm CMOS for optical MEMS applications. In: Circuits and systems (ISCAS), 2016 IEEE international symposium on (pp 1630–1633). IEEEGoogle Scholar
  11. Cai W, Li C, Luan S (2017) SOI RF switch for wireless sensor network. arXiv preprint arXiv:1701.01763
  12. Goggin R, Fitzgerald P, Stenson B, Carty E, McDaid P (2015) Commercialization of a reliable RF MEMS switch with integrated driver circuitry in a miniature QFN package for RF instrumentation applications. In: Microwave symposium (IMS), 2015 IEEE MTT-S international (pp 1–4). IEEEGoogle Scholar
  13. Gong S, Shen H, Barker NS (2011) A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches. IEEE Trans Microw Theory Tech 59(4):894–900CrossRefGoogle Scholar
  14. Hadi MA, Shairi NA, Ahmad BH, Wong PW (2014) Isolation improvement of discrete PIN diode switch using square dumbbell Defected Ground Structure. In: Applied electromagnetics (APACE), 2014 IEEE Asia-Pacific conference on (pp. 187–190). IEEEGoogle Scholar
  15. Jan CH, Agostinelli M, Deshpande H, El-Tanani MA, Hafez W, Jalan U, Lu YL (2010) RF CMOS technology scaling in high-k/metal gate era for RF SoC (system-on-chip) applications. In: Electron devices meeting (IEDM), 2010 IEEE International (pp. 27–2). IEEEGoogle Scholar
  16. Kaynak M, Ehwald KE, Scholz R, Korndörfer F, Wipf C, Sun YM, Gurbuz Y (2010) Characterization of an embedded RF-MEMS switch. In: Silicon monolithic integrated circuits in RF systems (SiRF), 2010 topical meeting on (pp. 144–147). IEEEGoogle Scholar
  17. LaRose RP, Murphy KD (2010) Impact dynamics of MEMS switches. Nonlinear Dyn 60(3):327–339CrossRefGoogle Scholar
  18. Liu Y, Bey Y, Liu X (2016) Extension of the hot-switching reliability of RF-MEMS switches using a series contact protection technique. IEEE Trans Microw Theory Tech 64(10):3151–3162CrossRefGoogle Scholar
  19. Matmat M, Koukos K, Coccetti F, Idda T, Marty A, Escriba C, Estève D (2010) Life expectancy and characterization of capacitive RF MEMS switches. Microelectron Reliab 50(9):1692–1696CrossRefGoogle Scholar
  20. Molinero D, Cunningham S, DeReus D, Morris A (2015) High order mode distortion characterization of the open stateof capacitive RF MEMS switches. In: Microwave symposium (IMS), 2015 IEEE MTT-S international (pp 1–3). IEEEGoogle Scholar
  21. Mulloni V, Solazzi F, Resta G, Giacomozzi F, Margesin B (2014) RF-MEMS switch design optimization for long-term reliability. Analog Integr Circ Sig Process 78(2):323–332CrossRefGoogle Scholar
  22. Nayfeh AH, Younis MI (2005) Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J Micromech Microeng 15(10):1840CrossRefGoogle Scholar
  23. Nguyen, C. T. C. (2007). MEMS technology for timing and frequency control. IEEE transactions on ultrasonics, ferroelectrics, and frequency control54(2)CrossRefGoogle Scholar
  24. Nguyen CTC, Lin Y (2015) U.S. Patent No. 20160155595A1. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  25. Pustan M, Birleanu C, Dudescu C, Chiorean R, Muller R, Baracu A (2017) Design, fabrication and characterization of RF MEMS switches with robust contact. In: Design, test, integration and packaging of MEMS/MOEMS (DTIP), 2017 symposium on (pp 1–6). IEEEGoogle Scholar
  26. Rebeiz GM (2004) RF MEMS: theory, design, and technology. John Wiley & Sons, HobokenGoogle Scholar
  27. Rinaldi M, Zuniga C, Zuo C, Piazza G (2010) Super-high-frequency two-port AlN contour-mode resonators for RF applications. IEEE Trans Ultrason Ferroelectr Freq Control 57(1):38–45CrossRefGoogle Scholar
  28. Sankey ND, Prelewitz DF, Brown TG (1992) All-optical switching in a nonlinear periodic-waveguide structure. Appl Phys Lett 60(12):1427–1429CrossRefGoogle Scholar
  29. Subramanian MB, Joshitha C, Sreeja BS, Nair P (2017) Multiport RF MEMS switch for satellite payload applications. Microsyst Technol 24(5):2379–2387CrossRefGoogle Scholar
  30. Valkonen R, Luxey C, Holopainen J, Icheln C, Vainikainen P (2010) Frequency-reconfigurable mobile terminal antenna with MEMS switches. In: Antennas and propagation (EuCAP), 2010 proceedings of the fourth European conference on (pp 1–5). IEEEGoogle Scholar
  31. Wei M, Avila A, Rivera I, Baghelani M, Wang J (2017) ZnO on nickel RF micromechanical resonators for monolithic wireless communication applications. J Micromech Microeng 27(5):055006CrossRefGoogle Scholar
  32. Yuan Q, Luo W, Zhao H, Peng B, Yang J, Yang F (2015) Frequency stability of RF-MEMS disk resonators. IEEE Trans Electron Devices 62(5):1603–1608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sara Rizehbandi
    • 1
  • Midia Reshadi
    • 2
  • Masoud Baghelani
    • 3
  • Ahmad Khademzadeh
    • 1
    • 4
    Email author
  1. 1.Engineering SchoolIslamic Azad University, Tehran Science and Research BranchTehranIran
  2. 2.Computer Engineering Department, Engineering SchoolIslamic Azad University, Tehran Science and Research BranchTehranIran
  3. 3.Microsystems and Advanced Instrumentation Lab. (MAILab.), Engineering SchoolIlam UniversityIlamIran
  4. 4.Research Institute for Information and Communication TechnologyTehranIran

Personalised recommendations