Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA)

  • Kenji YoshitaniEmail author
  • Masahiko Kawaguchi
  • Kazuyoshi Ishida
  • Kengo Maekawa
  • Hiroshi Miyawaki
  • Satoshi Tanaka
  • Hiroyuki Uchino
  • Manabu Kakinohana
  • Yasuhiro Koide
  • Miyuki Yokota
  • Hirotsugu Okamoto
  • Minoru Nomura


Cerebral Oximetry by Near-infrared Spectroscopy (NIRS) has been used in cardiovascular anesthesia, but there was no guideline of regional cerebral oxygen saturation measured by cerebral oximetry by NIRS. This guideline provides recommendations applicable to patients at a risk of developing cerebral ischemia in cardiovascular surgery. Guidelines are intended to define practices meeting the needs of patients in most, but not all, circumstances, and should not replace clinical judgment. The Japanese Society of Cardiovascular Anesthesiologists (JSCVA) Task Force on Guidelines make an effort to ensure that the guideline writing committee contains broad views in using cerebral oximetry. Adherence to recommendations could be enhanced by shared decision making between healthcare providers and patients. This guideline was focused on cerebral oximetry of pediatric and adult cardiovascular disease. We hope this guideline would play an important role in using cerebral oximetry by measured NIRS.


Near-infrared spectroscopy Cardiac surgery Cerebral oximeter 



Antegrade cerebral perfusion


Area under the curve


Coronary artery bypass grafting


Carotid endarterectomy


Cerebral hyperperfusion syndrome


Deep hypothermic circulatory arrest


Indocyanine green


Japanese Society of Cardiovascular Anesthesiologists


Light emitting diode


Modified Beer–Lambert


Magnetic resonance imaging


Near-infrared spectroscopy


Postoperative cognitive dysfunction


Retrograde cerebral perfusion


Regional cerebral oxygen saturation


Selective cerebral perfusion


Somatosensory evoked potential


Single photon emission computed tomography


Spatially resolved spectroscopy


Somatosensory evoked potential


Transcatheter aortic valve replacement


Transcranial Doppler


Thoracic endovascular aortic repair


Tissue oxygenation index


Time-resolved spectroscopy



  1. 1.
    Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;114:1289–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Hill MD, Brooks W, Mackey A, Clark WM, Meschia JF, Morrish WF, Mohr JP, Rhodes JD, Popma JJ, Lal BK, Longbottom ME, Voeks JH, Howard G, Brott TG, CREST Investigators. Stroke after carotid stenting and endarterectomy in the carotid revascularization endarterectomy versus stenting trial (CREST). Circulation. 2012;126:3054–61.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heyer EJ, Mergeche JL, Bruce SS, Ward JT, Stern Y, Anastasian ZH, Quest DO, Solomon RA, Todd GJ, Benvenisty AI, McKinsey JF, Nowygrod R, Morrissey NJ, Connolly ES. Statins reduce neurologic injury in asymptomatic carotid endarterectomy patients. Stroke. 2013;44:1150–2.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barbetta I, Carmo M, Mercandalli G, Lattuada P, Mazzaccaro D, Settembrini AM, Dallatana R, Settembrini PG. Outcomes of urgent carotid endarterectomy for stable and unstable acute neurologic deficits. J Vasc Surg. 2014;59:440–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Takase S, Yokoyama H. Future role of CABG surgery in coronary artery heart disease: fighting stroke, less invasiveness, and data disclosure (in Japanese). J Jpn Coron Assoc. 2013;19:301–5.CrossRefGoogle Scholar
  6. 6.
    Tarakji KG, Sabik JF III, Bhudia SK, Batizy LH, Blackstone EH. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA. 2011;305:381–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Mérie C, Køber L, Olsen PS, Andersson C, Jensen JS, Torp-Pedersen C. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke. 2012;43:38–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP, Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3–valve plus coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88:43–62.CrossRefGoogle Scholar
  9. 9.
    O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP. Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2–isolated valve surgery. Ann Thorac Surg. 2009;88:23–42.CrossRefGoogle Scholar
  10. 10.
    Hu Z, Wang Z, Ren Z, Wu H, Zhang M, Zhang H, Hu X. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients. J Thorac Cardiovasc Surg. 2014;148:544–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Tokuda Y, Miyata H, Motomura N, Oshima H, Usui A, Takamoto S, Japan Adult Cardiovascular Database Organization. Brain protection during ascending aortic repair for Stanford type A acute aortic dissection surgery. Nationwide analysis in Japan. Circ J. 2014;78:2431–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Knowles M, Murphy EH, Dimaio JM, Modrall JG, Timaran CH, Jessen ME, Arko FR III. The effects of operative indication and urgency of intervention on patient outcomes after thoracic aortic endografting. J Vasc Surg. 2011;53:926–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Patterson BO, Holt PJ, Nienaber C, Fairman RM, Heijmen RH, Thompson MM. Management of the left subclavian artery and neurologic complications after thoracic endovascular aortic repair. J Vasc Surg. 2014;60:1491–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Zahn R, Erbel R, Nienaber CA, Neumann FJ, Nef H, Eggebrecht H, Senges J. Endovascular aortic repair of thoracic aortic disease: early and 1-year results from a German multicenter registry. J Endovasc Ther. 2013;20:265–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Daneault B, Kirtane AJ, Kodali SK, Williams MR, Genereux P, Reiss GR, Smith CR, Moses JW, Leon MB. Stroke associated with surgical and transcatheter treatment of aortic stenosis: a comprehensive review. J Am Coll Cardiol. 2011;58:2143–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Martin BJ, Buth KJ, Arora RC, Baskett RJ. Delirium: a cause for concern beyond the immediate postoperative period. Ann Thorac Surg. 2012;93:1114–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Gottesman RF, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, Selnes OA, McKhann GM. Delirium after coronary artery bypass graft surgery and late mortality. Ann Neurol. 2010;67:338–44.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK, Jones RN. Cognitive trajectories after postoperative delirium. N Engl J Med. 2012;367:30–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kazmierski J, Kowman M, Banach M, Fendler W, Okonski P, Banys A, Jaszewski R, Rysz J, Mikhailidis DP, Sobow T, Kloszewska I, IPDACS Study. Incidence and predictors of delirium after cardiac surgery: results from The IPDACS Study. J Psychosom Res. 2010;69:179–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Rudolph JL, Inouye SK, Jones RN, Yang FM, Fong TG, Levkoff SE, Marcantonio ER. Delirium: an independent predictor of functional decline after cardiac surgery. J Am Geriatr Soc. 2010;58:643–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Milstein A, Pollack A, Kleinman G, Barak Y. Confusion/delirium following cataract surgery: an incidence study of 1-year duration. Int Psychogeriatr. 2002;14:301–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Mann C, Pouzeratte Y, Boccara G, Peccoux C, Vergne C, Brunat G, Domergue J, Millat B, Colson P. Comparison of intravenous or epidural patient-controlled analgesia in the elderly after major abdominal surgery. Anesthesiology. 2000;92:433–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaneko T, Takahashi S, Naka T, Hirooka Y, Inoue Y, Kaibara N. Postoperative delirium following gastrointestinal surgery in elderly patients. Surg Today. 1997;27:107–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Fisher BW, Flowerdew G. A simple model for predicting postoperative delirium in older patients undergoing elective orthopedic surgery. J Am Geriatr Soc. 1995;43:175–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Weed HG, Lutman CV, Young DC, Schuller DE. Preoperative identification of patients at risk for delirium after major head and neck cancer surgery. Laryngoscope. 1995;105:1066–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, Haslauer CM, Donaldson MC, Whittemore AD, Sugarbaker DJ, Poss R, Haas S, Cook EF, Orav EJ, Lee TH. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA. 1994;271:134–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Schneider F, Böhner H, Habel U, Salloum JB, Stierstorfer A, Hummel TC, Miller C, Friedrichs R, Müller EE, Sandmann W. Risk factors for postoperative delirium in vascular surgery. Gen Hosp Psychiatry. 2002;24:28–34.CrossRefPubMedGoogle Scholar
  29. 29.
    Böhner H, Hummel TC, Habel U, Miller C, Reinbott S, Yang Q, Gabriel A, Friedrichs R, Müller EE, Ohmann C, Sandmann W, Schneider F. Predicting delirium after vascular surgery: a model based on pre- and intraoperative data. Ann Surg. 2003;238:149–56.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Benoit AG, Campbell BI, Tanner JR, Staley JD, Wallbridge HR, Biehl DR, Bradley BD, Louridas G, Guzman RP, Fromm RA. Risk factors and prevalence of perioperative cognitive dysfunction in abdominal aneurysm patients. J Vasc Surg. 2005;42:884–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson T, Monk T, Rasmussen LS, Abildstrom H, Houx P, Korttila K, Kuipers HM, Hanning CD, Siersma VD, Kristensen D, Canet J, Ibañaz MT, Moller JT, ISPOCD2 Investigators. Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology. 2002;96:1351–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Canet J, Raeder J, Rasmussen LS, Enlund M, Kuipers HM, Hanning CD, Jolles J, Korttila K, Siersma VD, Dodds C, Abildstrom H, Sneyd JR, Vila P, Johnson T, Muñoz Corsini L, Silverstein JH, Nielsen IK, Moller JT, ISPOCD2 investigators. Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiol Scand. 2003;47:1204–10.CrossRefPubMedGoogle Scholar
  33. 33.
    van Dijk D, Keizer AM, Diephuis JC, Durand C, Vos LJ, Hijman R. Neurocognitive dysfunction after coronary artery bypass surgery: a systematic review. J Thorac Cardiovasc Surg. 2000;120:632–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Reves JG, Blumenthal JA, Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.CrossRefPubMedGoogle Scholar
  35. 35.
    Rasmussen LS, Larsen K, Houx P, Skovgaard LT, Hanning CD, Moller JT, ISPOCD group. The International Study of Postoperative Cognitive Dysfunction. The assessment of postoperative cognitive function. Acta Anaesthesiol Scand. 2001;45:275–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Rudolph JL, Schreiber KA, Culley DJ, McGlinchey RE, Crosby G, Levitsky S, Marcantonio ER. Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand. 2010;54:663–77.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bucerius J, Gummert JF, Borger MA, Walther T, Doll N, Onnasch JF, Metz S, Falk V, Mohr FW. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75:472–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Anyanwu AC, Filsoufi F, Salzberg SP, Bronster DJ, Adams DH. Epidemiology of stroke after cardiac surgery in the currentera. J Thorac Cardiovasc Surg. 2007;134:1121–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Dacey LJ, Likosky DS, Leavitt BJ, Lahey SJ, Quinn RD, Hernandez F Jr, Quinton HB, Desimone JP, Ross CS, O’Connor GT, Northern New England Cardiovascular Disease Study Group. Perioperative stroke and long-term survival after coronary bypass graft surgery. Ann Thorac Surg. 2005;79:532–6.CrossRefPubMedGoogle Scholar
  40. 40.
    McKhann GM, Grega MA, Borowicz LM Jr, Baumgartner WA, Selnes OA. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006;37:562–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Newman MF, Grocott HP, Mathew JP, White WD, Landolfo K, Reves JG, Laskowitz DT, Mark DB, Blumenthal JA, Neurologic Outcome Research Group and the Cardiothoracic Anesthesia Research Endeavors (CARE) Investigators of the Duke Heart Center. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN, Clagett GP, Hachinski VC, Sackett DL, Thorpe KE, Meldrum HE, Spence JD. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339:1415–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Risk of stroke in the distribution of an asymptomatic carotid artery. The European Carotid Surgery Trialists Collaborative Group. Lancet. 1995;345:209–12.Google Scholar
  44. 44.
    Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998;351:1379–87.Google Scholar
  45. 45.
    Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA. 1995;273:1421–8.Google Scholar
  46. 46.
    Hobson RW II, Weiss DG, Fields WS, Goldstone J, Moore WS, Towne JB, Wright CB. Efficacy of carotid endarterectomy for asymptomatic carotid stenosis. The Veterans Affairs Cooperative Study Group. N Engl J Med. 1993;328:221–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Mayberg MR, Wilson SE, Yatsu F, Weiss DG, Messina L, Hershey LA, Colling C, Eskridge J, Deykin D, Winn HR. Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis. Veterans Affairs Cooperative Studies Program 309 Trialist Group. JAMA. 1991;266:3289–94.CrossRefPubMedGoogle Scholar
  48. 48.
    North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–53.CrossRefGoogle Scholar
  49. 49.
    Rothwell PM, Gibson RJ, Slattery J, Sellar RJ, Warlow CP. Prognostic value and reproducibility of measurements of carotid stenosis. A comparison of three methods on 1001 angiograms. European Carotid Surgery Trialists’ Collaborative Group. Stroke. 1994;25:2440–4.CrossRefPubMedGoogle Scholar
  50. 50.
    Japan Stroke Society Committee on the Japanese Guidelines for the Management of Stroke. In. Japanese guidelines for the management of stroke 2015, First Edition. Tokyo: Kyowa Kikaku; 2015 (in Japanese).Google Scholar
  51. 51.
    Kretz B, Abello N, Bouchot O, Kazandjian C, Beaumont M, Terriat B, Bernard A, Brenot R, Steinmetz E. Risk index for predicting shunt in carotid endarterectomy. Ann Vasc Surg. 2014;28:1204–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Aburahma AF, Mousa AY, Stone PA. Shunting during carotid endarterectomy. J Vasc Surg. 2011;54:1502–10.CrossRefPubMedGoogle Scholar
  53. 53.
    Ogasawara K, Sakai N, Kuroiwa T, Hosoda K, Iihara K, Toyoda K, Sakai C, Nagata I, Ogawa A, Japanese Society for Treatment at Neck in Cerebrovascular Disease Study Group. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4494 patients. J Neurosurg. 2007;107:1130–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Stecker MM, Cheung AT, Pochettino A, Kent GP, Patterson T, Weiss SJ, Bavaria JE. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71:14–21.CrossRefPubMedGoogle Scholar
  55. 55.
    James ML, Andersen ND, Swaminathan M, Phillips-Bute B, Hanna JM, Smigla GR, Barfield ME, Bhattacharya SD, Williams JB, Gaca JG, Husain AM, Hughes GC. Predictors of electrocerebral inactivity with deep hypothermia. J Thorac Cardiovasc Surg. 2014;147:1002–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Orihashi K, Sueda T, Okada K, Imai K. Malposition of selective cerebral perfusion catheter is not a rare event. Eur J Cardiothorac Surg. 2005;27:644–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Safi HJ, Miller CC III, Lee TY, Estrera AL. Repair of ascending and transverse aortic arch. J Thorac Cardiovasc Surg. 2011;142:630–3.CrossRefPubMedGoogle Scholar
  58. 58.
    Harris DN, Bailey SM, Smith PL, Taylor KM, Oatridge A, Bydder GM. Brain swelling in first hour after coronary artery bypass surgery. Lancet. 1993;342:586–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Usui A, Oohara K, Liu TL, Murase M, Tanaka M, Takeuchi E, Abe T. Determination of optimum retrograde cerebral perfusion conditions. J Thorac Cardiovasc Surg. 1994;107:300–8.PubMedGoogle Scholar
  60. 60.
    Okita Y, Miyata H, Motomura N, Takamoto S, Japan Cardiovascular Surgery Database Organization. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion: analysis based on the Japan Adult Cardiovascular Surgery Database. J Thorac Cardiovasc Surg. 2015;149:65–73.CrossRefGoogle Scholar
  61. 61.
    Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery. Masuda M, Kuwano H, Okumura M, Arai H, Endo S, Doki Y, Kobayashi J, Motomura N, Nishida H, Saiki Y, Tanaka F, Tanemoto K, Toh Y, Yokomise H. Thoracic and cardiovascular surgery in Japan during 2013: Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2015;63:670–701.Google Scholar
  62. 62.
    Orihashi K. Cerebral malperfusion in acute aortic dissection. Surg Today. 2016;46:1353–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Most H, Reinhard B, Gahl B, Englberger L, Kadner A, Weber A, Schmidli J, Carrel TP, Huber C. Is surgery in acute aortic dissection type A still contraindicated in the presence of preoperative neurological symptoms? Eur J Cardiothorac Surg. 2015;48:945–50.CrossRefPubMedGoogle Scholar
  64. 64.
    Fleck T, Ehrlich M, Czerny M, Wolner E, Grabenwoger M, Grimm M. Intraoperative iatrogenic type A aortic dissection and perioperative outcome. Interact Cardiovasc Thorac Surg. 2006;5:11–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Ura M, Sakata R, Nakayama Y, Goto T. Ultrasonographic demonstration of manipulation-related aortic injuries after cardiac surgery. J Am Coll Cardiol. 2000;35:1303–10.CrossRefPubMedGoogle Scholar
  66. 66.
    Kapetanakis EI, Stamou SC, Dullum MK, Hill PC, Haile E, Boyce SW, Bafi AS, Petro KR, Corso PJ. The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann Thorac Surg. 2004;78:1564–71.CrossRefPubMedGoogle Scholar
  67. 67.
    Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55:1475–82.CrossRefPubMedGoogle Scholar
  68. 68.
    Gottesman RF, Sherman PM, Grega MA, Yousem DM, Borowicz LM Jr, Selnes OA, Baumgartner WA, McKhann GM. Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome. Stroke. 2006;37:2306–11.CrossRefPubMedGoogle Scholar
  69. 69.
    Gold JP, Charlson ME, Williams-Russo P, Szatrowski TP, Peterson JC, Pirraglia PA, Hartman GS, Yao FS, Hollenberg JP, Barbut D, Hayes JG, Thomas SJ, Purcell MH, Mattis S, Gorkin L, Post M, Krieger KH, Isom OW. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–11.CrossRefPubMedGoogle Scholar
  70. 70.
    Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006;103:21–37.CrossRefPubMedGoogle Scholar
  71. 71.
    Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–52.CrossRefPubMedGoogle Scholar
  72. 72.
    Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    du Plessis AJ. Mechanisms of brain injury during infant cardiac surgery. Semin Pediatr Neurol. 1999;6:32–47.CrossRefPubMedGoogle Scholar
  74. 74.
    Strauss AW, Johnson MC. The genetic basis of pediatric cardiovascular disease. Semin Perinatol. 1996;20:564–76.CrossRefPubMedGoogle Scholar
  75. 75.
    Andropoulos DB, Hunter JV, Nelson DP, Stayer SA, Stark AR, McKenzie ED, Heinle JS, Graves DE, Fraser CD Jr. Brain-immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139:543–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weight less than 1500 gm. J Pediatr. 1978;92:529–34.CrossRefPubMedGoogle Scholar
  77. 77.
    Te Pas AB, van Wezel-Meijler G, Bokenkamp-Gramann R, Walther FJ. Preoperative cranial ultrasound findings in infants with major congenital heart disease. Acta Paediatr. 2005;94:1597–603.CrossRefPubMedGoogle Scholar
  78. 78.
    Laptook AR, Shankaran S, Ambalavanan N, Carlo WA, McDonald SA, Higgins RD, Das A, The Hyothermia Subcommitte of the NICD Neonatal Research Network. Outcome of term infants using apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics. 2009;124:1619.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Mahle WT, Tavani F, Zimmerman RA, Nicolson SC, Galli KK, Gaynor JW, Clancy RR, Montenegro LM, Spray TL, Chiavacci RM, Wernovsky G, Kurth CD. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002;106:1109–14.Google Scholar
  80. 80.
    McQuillen PS, Barkovich AJ, Hamrick SE, Perez M, Ward P, Glidden DV, Azakie A, Karl T, Miller SP. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41.CrossRefPubMedGoogle Scholar
  81. 81.
    Dent CL, Spaeth JP, Jones BV, Schwartz SM, Glauser TA, Hallinan B, Pearl JM, Khoury PR, Kurth CD. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006;131:190–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Andropoulos DB, Diaz LK, Fraser CD Jr, McKenzie ED, Stayer SA. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg. 2004;98:1267–72.CrossRefPubMedGoogle Scholar
  83. 83.
    Abdul Aziz KA, Meduoye A. Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest? Interact Cardiovasc Thorac Surg. 2010;10:271–82.CrossRefPubMedGoogle Scholar
  84. 84.
    Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy: depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neurol Res. 1995;17:89–93.CrossRefPubMedGoogle Scholar
  85. 85.
    Yamashita Y. The measurement principles of time-resolved spectroscopy (in Japanese). In: Okada E, Hoshi Y, Miyai I, Watanabe E, editors. NIRS: its basics and clinical application. Tokyo: Shinkoh Igaku Shuppansha; 2012. pp. 19–22.Google Scholar
  86. 86.
    Sakatani K. Basic principles (in Japanese). In: Japan Cerebral Metabolism Monitoring Research Group, editor. Near-infrared spectroscopy made easy for clinicians. Tokyo: Shinkoh Igaku Shuppansha; 2002: pp. 1–9.Google Scholar
  87. 87.
    Phelps HM, Mahle WT, Kim D, Simsic JM, Kirshbom PM, Kanter KR, Maher KO. Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg. 2009;87:1490–4.CrossRefPubMedGoogle Scholar
  88. 88.
    Shiraishi Y, Yokoyama J, Atsumi K, Satou N, Momose K, Yamaguchi N. Hazard induced by sensor probe of near infrared spectroscopy (Invos 3100A) (in Japanese with English abstract). J Jpn Soc Clin Anesth. 2001;21:430–3.CrossRefGoogle Scholar
  89. 89.
    Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol. 2003;15:302–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Cho AR, Kwon JY, Kim C, Hong JM, Kang C. Effect of sensor location on regional cerebral oxygen saturation measured by INVOS 5100 in on-pump cardiac surgery. J Anesth. 2017;31:178–84.CrossRefPubMedGoogle Scholar
  91. 91.
    Yoshitani K, Kawaguchi M, Okuno T, Kanda T, Ohnishi Y, Kuro M, Nishizawa M. Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass. Anesth Analg. 2007;104:341–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanda T, Ohnishi Y, Kuro M. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106:458–62.CrossRefPubMedGoogle Scholar
  93. 93.
    Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116:834–40.CrossRefPubMedGoogle Scholar
  94. 94.
    Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, Rasmussen P, Secher NH. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118:823–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Kato S, Yoshitani K, Kubota Y, Inatomi Y, Ohnishi Y. Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy. J Anesth. 2017;31:103–10.CrossRefPubMedGoogle Scholar
  96. 96.
    Closhen D, Berres M, Werner C, Engelhard K, Schramm P. Influence of beach chair position on cerebral oxygen saturation: a comparison of INVOS and FORE-SIGHT cerebral oximeter. J Neurosurg Anesthesiol. 2013;25:414–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, Han SH. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res. 2006;34:531–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A, Mortier EP, Struys MM. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Closhen D, Treiber AH, Berres M, Sebastiani A, Werner C, Engelhard K, Schramm P. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: a clinical observational study. Eur J Anaesthesiol. 2014;31:104–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M. Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg. 1998;89:389–94.CrossRefPubMedGoogle Scholar
  103. 103.
    Oyama H, Endoh O, Iizuka H, Ikeda S, Inoue S, Nakashima Y, Shibuya S. The effectiveness of regional cerebral oxygen saturation monitoring using near-infrared spectroscopy in carotid endarterectomy. J Clin Neurosci. 2003;10:79–83.CrossRefGoogle Scholar
  104. 104.
    Carlin RE, McGraw DJ, Calimlim JR, Mascia MF. The use of near-infrared cerebral oximetry in awake carotid endarterectomy. J Clin Anesth. 1998;10:109–13.CrossRefPubMedGoogle Scholar
  105. 105.
    Beese U, Langer H, Lang W, Dinkel M. Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke. 1998;29:2032–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somato sensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89:533–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebralischemia during carotid endarterectomy. Anesthesiology. 2000;93:964–70.CrossRefPubMedGoogle Scholar
  108. 108.
    Mille T, Tachimiri ME, Klersy C, Ticozzelli G, Bellinzona G, Blangetti I, Pirrelli S, Lovotti M, Odero A. Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg. 2004;27:646–50.CrossRefPubMedGoogle Scholar
  109. 109.
    Yamamoto K, Miyata T, Nagawa H. Good correlation between cerebral oxygenation measured using near infrared spectroscopy and stump pressure during carotid clamping. Int Angiol. 2007;26:262–5.PubMedGoogle Scholar
  110. 110.
    Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9.CrossRefPubMedGoogle Scholar
  111. 111.
    Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ. The value of near-infrared spectroscopy measured cerebraloximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg. 2009;38:539–45.CrossRefPubMedGoogle Scholar
  112. 112.
    Pennekamp CW, Immink RV, den Ruijter HM, Kappelle LJ, Ferrier CM, Bots ML, Buhre WF, Moll FL, de Borst GJ. Nearinfrared spectroscopy can predict the onset of cerebral hyperperfusion syndrome after carotid endarterectomy. Cerebrovasc Dis. 2012;34:314–21.CrossRefPubMedGoogle Scholar
  113. 113.
    Zogogiannis ID, Iatrou CA, Lazarides MK, Vogiatzaki TD, Wachtel MS, Chatzigakis PK, Dimitriou VK. Evaluation of an intraoperative algorithm based on near-infrared refracted spectroscopy monitoring, in the intraoperative decision for shunt placement, in patients undergoing carotid endarterectomy. Middle East J Anaesthesiol. 2011;21:367–73.PubMedGoogle Scholar
  114. 114.
    Ogasawara K, Inoue T, Kobayashi M, Endo H, Fukuda T, Ogawa A. Pretreatment with the free radical scavenger edaravone prevents cerebral hyperperfusion after carotid endarterectomy. Neurosurgery. 2004;55:1060–7.CrossRefPubMedGoogle Scholar
  115. 115.
    Orihashi K, Sueda T, Okada K, Imai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004;26:907–11.CrossRefPubMedGoogle Scholar
  116. 116.
    Olsson C, Thelin S. Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegradecerebral perfusion: diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg. 2006;131:371–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Fischer GW, Lin HM, Krol M, Galati MF, Di Luozzo G, Griepp RB, Reich DL. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg. 2011;141:815–21.CrossRefPubMedGoogle Scholar
  118. 118.
    Sakaguchi G, Komiya T, Tamura N, Obata S, Masuyama S, Kimura C, Kobayashi T. Cerebral malperfusion in acute type Adissection: direct innominate artery cannulation. J Thorac Cardiovasc Surg. 2005;129:1190–1.CrossRefPubMedGoogle Scholar
  119. 119.
    Harrer M, Waldenberger PR, Weiss G, Folkmann S, Gorlitzer M, Moidl R, Grabenwoeger M. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectrpscopy. Eur J Cardiothorac Surg. 2010;38:561–7.CrossRefPubMedGoogle Scholar
  120. 120.
    Goldman S, Sulter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7:E376–81.CrossRefPubMedGoogle Scholar
  121. 121.
    Edmonds HL Jr. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci. 2005;1053:12–9.CrossRefPubMedGoogle Scholar
  122. 122.
    Reents W, Muellges W, Franke D, Babin-Ebell J, Elert O. Cerebral oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass grafting and early postoperative cognitive function. Ann Thorac Surg. 2002;74:109–14.CrossRefPubMedGoogle Scholar
  123. 123.
    Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.CrossRefPubMedGoogle Scholar
  124. 124.
    Hong SW, Shim JK, Choi YS, Kim DH, Chang BC, Kwak YL. Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg. 2008;33:560–5.CrossRefPubMedGoogle Scholar
  125. 125.
    Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM III, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–44.CrossRefPubMedGoogle Scholar
  126. 126.
    Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M, Heringlake M. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth. 2011;106:840–50.CrossRefPubMedGoogle Scholar
  127. 127.
    Fudickar A, Peters S, Stapelfeldt C, Serocki G, Leiendecker J, Meybohm P, Steinfath M, Bein B. Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: a prospective observational pilot study. BMC Anesthesiol. 2011;11:7.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    de Tournay-Jette E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25:95–104.CrossRefPubMedGoogle Scholar
  129. 129.
    Schoen J, Meyerrose J, Paarmann H, Heringlake M, Hueppe M, Berger KU. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. CritCare. 2011;15:R218.Google Scholar
  130. 130.
    Palmbergen WA, van Sonderen A, Keyhan-Falsafi AM, Keunen RW, Wolterbeek R. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: the Haga Brain CareStrategy. Interact Cardiovasc Thorac Surg. 2012;15:671–7.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Mohandas BS, Jagadeesh AM, Vikram SB. Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth. 2013;16:102–6.CrossRefPubMedGoogle Scholar
  132. 132.
    Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.CrossRefPubMedGoogle Scholar
  133. 133.
    Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11:274–81.CrossRefPubMedGoogle Scholar
  134. 134.
    Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF, Hogue CW. Predicting the limits of cerebralautoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10.CrossRefPubMedGoogle Scholar
  135. 135.
    Fenton KN, Lessman K, Glogowski K, Fogg S, Duncan KF. Cerebral oxygen saturation does not normalize until after stage 2 single ventricle palliation. Ann Thorac Surg. 2007;83:1431–6.CrossRefPubMedGoogle Scholar
  136. 136.
    Kussman BD, Wypij D, DiNardo JA, Newburger JW, Mayer JE Jr, del Nido PJ, Bacha EA, Pigula F, McGrath E, Laussen PC. Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg. 2009;108:1122–31.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Kurth CD, Steven JM, Nicolson SC. Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology. 1995;82:74–82.CrossRefPubMedGoogle Scholar
  138. 138.
    Austin EH III, Edmonds HL Jr, Auden SM, Seremet V, Niznik G, Sehic A, Sowell MK, Cheppo CD, Corlett KM. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114:707–17.CrossRefPubMedGoogle Scholar
  139. 139.
    Kawaguchi M, Yoshitani K, Ishida K, Yokota M, Uezono S, Nomura M. Survey on perioperative use of cerebral near-infrared spectroscopy monitoring in Japan (in Japanese with English abstract). J Jpn Soc Clin Anesth. 2015;35:651–59.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2019

Authors and Affiliations

  • Kenji Yoshitani
    • 1
    Email author
  • Masahiko Kawaguchi
    • 2
  • Kazuyoshi Ishida
    • 3
  • Kengo Maekawa
    • 4
  • Hiroshi Miyawaki
    • 5
  • Satoshi Tanaka
    • 6
  • Hiroyuki Uchino
    • 7
  • Manabu Kakinohana
    • 8
  • Yasuhiro Koide
    • 9
  • Miyuki Yokota
    • 10
  • Hirotsugu Okamoto
    • 11
  • Minoru Nomura
    • 12
  1. 1.Department of AnesthesiologyNational Cerebral Cardiovascular CenterSuitaJapan
  2. 2.Department of AnesthesiologyNara Medical UniversityKashiharaJapan
  3. 3.Department of AnesthesiologyYamaguchi University Graduate School of MedicineUbeJapan
  4. 4.Department of AnesthesiologyKumamoto Chuo HospitalKumamotoJapan
  5. 5.Department of Anesthesiology and Intensive Care MedicineKokura Memorial HospitalKitakyushuJapan
  6. 6.Department of Anesthesiology and ResuscitologyShinshu University School of MedicineMatsumotoJapan
  7. 7.Department of AnesthesiologyTokyo Medical UniversityTokyoJapan
  8. 8.Department of Anesthesiology, Graduate School of MedicineUniversity of RyukyuNishiharaJapan
  9. 9.Department of AnesthesiologyShonan Kamakura General HospitalKamakuraJapan
  10. 10.Department of AnesthesiologyCancer Institute Hospital of Japanese Foundation of Cancer ResearchTokyoJapan
  11. 11.Department of AnesthesiologyKitasato University School of MedicineTokyoJapan
  12. 12.Department of AnesthesiologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations