Advertisement

Crystalloid coloading vs. colloid coloading in elective Caesarean section: postspinal hypotension and vasopressor consumption, a prospective, observational clinical trial

  • Lutz Kaufner
  • A. Karekla
  • A. Henkelmann
  • S. Welfle
  • K. von Weizsäcker
  • L. Hellmeyer
  • C. von Heymann
Original Article

Abstract

Background

Maternal hypotension is a common side effect of spinal anaesthesia for Caesarean section. The combination of colloid coloading and vasopressors was considered our standard for its prevention and treatment. As the safety of hydroxyethyl starch is under debate, we replaced colloid with crystalloid coloading.

Objective

We hypothesize that the mean blood pressure drop is greater when coloading with crystalloids.

Design

Prospective, observational clinical trial.

Setting

Two-centre study conducted in Berlin, Germany.

Patients

Parturients scheduled for a Caesarean section were screened for eligibility.

Intervention

The study protocol and patient monitoring were based on the standard operating procedure for Caesarean section in both centres. The data from the crystalloid group were prospectively collected between November 2014 and July 2015.

Main outcome measures

The primary endpoint was the median drop in mean blood pressure after induction of spinal anaesthesia. Secondary endpoints were incidence of hypotension (drop > 20% of baseline systolic pressure /drop < 100 mmHg), vasopressor and additional fluid requirements (mL), incidence of bradycardia (heart rate < 60 beats per minute), blood loss, Apgar score, and umbilical artery pH. In case of hypotension, patients received phenylephrine or cafedrine/theodrenaline according to their heart rate. A p < 0.05 was considered significant.

Results

345 prospectively enrolled patients (n = 193 crystalloid group vs. n = 152 colloid group) were analysed. The median drop in mean blood pressure was greater in the crystalloid group [34 mmHg (25; 42 mmHg) vs. 21 mmHg (13; 29 mmHg), p < 0.001]. Incidences of hypotension [93.3% vs. 83.6%, p: 0.004] and bradycardia [19.7% vs. 9.9%, p: 0.012] were also significantly greater in the crystalloid group. Vasopressor requirements, blood loss and neonatal outcome were not different between the groups.

Conclusions

Crystalloid coloading was associated with a greater drop in mean blood pressure and a higher incidence of hypotension when compared with colloid coloading. Neonatal outcome was, however, unaffected by the type of fluid.

Trial registration

DRKS00006783 (http://www.drks.de).

Keywords

Caesarean section Spinal anaesthesia Hypotension Coloading Crystalloids Colloids 

Notes

Acknowledgements

The Editors would like to acknowledge the help of Geoffrey Reading and Andreas Bietenbeck who have given their expertise and time in reviewing the manuscript.

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Tawfik MM, Hayes SM, Jacoub FY, Badran BA, Gohar FM, Shabana AM, Abdelkhalek M, Emara MM. Comparison between colloid preload and crystalloid co-load in cesarean section under spinal anesthesia: a randomized controlled trial. Int J Obstet Anesth. 2014;23(4):317–23.CrossRefPubMedGoogle Scholar
  2. 2.
    Marcus HE, Behrend A, Schier R, Dagtekin O, Teschendorf P, Böttiger BW, Spöhr F. Anästhesiologisches Management der Sectio caesarea: Deutschlandweite Umfrage. Anaesthesist. 2011;60(10):916–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Ripollés Melchor J, Espinosa, Martínez Hurtado E, Casans Francés R, Navarro Pérez R, Abad Gurumeta A, Calvo Vecino JM. Colloids versus crystalloids in the prevention of hypotension induced by spinal anesthesia in elective cesarean section. A systematic review and meta-analysis. Miner Anestesiol. 2015;81:1019–30.Google Scholar
  4. 4.
    Kinsella SM, Carvalho B, Dyer RA, Fernando R, Mcdonnell N, Mercier FJ, Palanisamy A, Sia ATH, Van de Velde M, Vercueil A, Consensus Statement Collaborators. International consensus statement on the management of hypotension with vasopressors during caesarean section under spinal anaesthesia. Anaesthesia. 2018;73(1):71–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Reynolds F, Seed PT. Anaesthesia for Caesarean section and neonatal acid–base status: a meta-analysis. Anaesthesia. 2005;60(7):636–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Cyna AM, Andrew M, Emmett RS, Middleton P, Simmons SW. Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst Rev. 2006;4(4):CD002251.Google Scholar
  7. 7.
    Klöhr S, Roth R, Hofmann T, Rossaint R, Heesen M. Definitions of hypotension after spinal anaesthesia for caesarean section: literature search and application to parturients. Acta Anaesthesiol Scand. 2010;54(8):909–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Sharwood-Smith G, Drummond GB. Hypotension in obstetric spinal anaesthesia: a lesson from pre-eclampsia. Br J Anaesth. 2009;102(3):291–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JE, George RB, Habib AS. Spinal-induced hypotension: Incidence, mechanisms, prophylaxis, and management: summarizing 20 years of research. Best Pract Res Clin Anaesthesiol. 2017;31(1):57–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Nag DS, Samaddar DP, Chatterjee A, Kumar H, Dembla A. Vasopressors in obstetric anesthesia: a current perspective. World J Clin Cases. 2015;3(1):58–64.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Gogarten W. Spinal anaesthesia for obstetrics. Vol. 17, best practice and research. Clin Anaesthesiol. 2003. 2013:377–92.Google Scholar
  12. 12.
    Lirk P, Haller I, Wong C. a. Management of spinal anaesthesia-induced hypotension for caesarean delivery: a European survey. Eur J Anaesthesiol. 2012;29(9):452–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Mercier FJ. Fluid loading for cesarean delivery under spinal anesthesia: have we studied all the options? Anesth Analog. 2011;113(4):677–80.CrossRefGoogle Scholar
  14. 14.
    Gattas DJ, Dan A, Myburgh J, Billot L, Lo S, Finfer S. Fluid resuscitation with 6% hydroxyethyl starch (130/0.4 and 130/0.42) in acutely ill patients: systematic review of effects on mortality and treatment with renal replacement therapy. Intensive Care Med. 2013. 39:558–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Hunsicker O, Francis RC. Comment on: Assessment of hemodynamic efficacy and safety of 6% hydroxyethyl starch 130/0.4 vs. 0.9% Nacl fluid replacement in patients with severe sepsis: how to guide fluid therapy? Crit Care (Lond, Engl). 2012;16:464.CrossRefGoogle Scholar
  16. 16.
    Professional H. Hydroxyethyl starch solutions: FDA safety communication—boxed warning on increased mortality and severe renal injury and risk of bleeding. 2013.Google Scholar
  17. 17.
    European Medicines Agency. Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients—CMDh endorses PRAC recommendations HES will be available in restricted patient populations. Ema/640658/2013. 2013;44(October):1–3.Google Scholar
  18. 18.
    Mercier FJ, Diemunsch P, Ducloy-Bouthors AS, Mignon A, Fischler M, Malinovsky JM, Bolandard F, Aya AG, Raucoules-Aimé M, Chassard D, Keita H, Rigouzzo A, Le Gouez A; CAESAR Working Group. 6% Hydroxyethyl starch (130/0.4) vs Ringer’s lactate preloading before spinal anaesthesia for Caesarean delivery: the randomized, double-blind, multicentre CAESAR trial. Br J Anaesth. 2014;113(3):459–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Mercier FJ. Cesarean delivery fluid management. Curr Opin Anaesthesiol. 2012;25(3):286–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaufner L, Heimann S, Zander D, Weizsäcker K, Correns I, Sander M, Spies C, Schuster M, Feldheiser A, Henkelmann A, Wernecke KD, VON Heymann C. Neuraxial anesthesia for pain control after cesarean section: a prospective randomized trial comparing three different neuraxial techniques in clinical practice. Miner Anestesiol. 2016;82(5):514–24.Google Scholar
  21. 21.
    McDonald S, Fernando R, Ashpole K, Columb M. Maternal cardiac output changes after crystalloid or colloid coload following spinal anesthesia for elective cesarean delivery: a randomized controlled trial. Anesth Analg. 2011;113(4):803–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Arora P, Singh RM, Kundra S, Gautam PL. Fluid administration before caesarean delivery: does type and timing matter? J Clin Diagn Res. 2015;9(6):UC01–4.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Alimian M, Mohseni M, Safaeian R, Faiz SHR, Majedi MA. Comparison of hydroxyethyl starch 6% and crystalloids for preloading in elective caesarean section under spinal anesthesia. Med Arch (Sarajevo Bosnia Herzegovina). 2014;68(4):279–81.Google Scholar
  24. 24.
    Oh A-Y, Hwang J-W, Song I-A, Kim M-H, Ryu J-H, Park H-P, Jeon Y-T, Do S-H. Influence of the timing of administration of crystalloid on maternal hypotension during spinal anesthesia for cesarean delivery: preload versus coload. BMC Anesthesiol. 2014;14(1):36.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Ueyama H, He YL, Tanigami H, Mashimo T, Yoshiya I. Effects of crystalloid and colloid preload on blood volume in the parturient undergoing spinal anesthesia for elective Cesarean section. Anesthesiology. 1999;91(6):1571–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ewaldsson CA, Hahn RG. Volume kinetics of Ringer’s solution during induction of spinal and general anaesthesia. Br J Anaesth. 2001;87(3):406–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Ngan Kee WD. The use of vasopressors during spinal anaesthesia for caesarean section. Curr Opin Anaesthesiol. 2017;30(3):319–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Habib AS. A review of the impact of phenylephrine administration on maternal hemodynamics and maternal and neonatal outcomes in women undergoing cesarean delivery under spinal anesthesia. Anesth Analg. 2012;114(2):377–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Ngan Kee WD, Khaw KS, Ng FF, Lee BB. Prophylactic phenylephrine infusion for preventing hypotension during spinal anesthesia for cesarean delivery. Anesth Analg 2004;815–21.Google Scholar
  30. 30.
    Erler I, Gogarten W. Geburtshilfliche anästhesie: hypotonieprophylaxe und -therapie bei regionalanästhesien zur sectio caesarea. Anasthesiol Intensivmed Notfallmedizin Schmerztherapie. 2007;42(3):208–13.CrossRefGoogle Scholar
  31. 31.
    Ngan Kee WD, Tam YH, Khaw KS, Ng FF, Lee SWY. Closed-loop feedback computer-controlled phenylephrine for maintenance of blood pressure during spinal anesthesia for cesarean delivery: a randomized trial comparing automated boluses versus infusion. Anesth Analg. 2017;125(1):117–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Heller AR, Heger J, Gama de Abreu M, Müller MP. Cafedrine/theodrenaline in anaesthesia. Anaesthesist. 2015;64(3):190–6.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Bein B, Christ T, Eberhart LHJ. Cafedrine/theodrenaline (20:1) is an established alternative for the management of arterial hypotension in Germany—a review based on a systematic literature search. Front Pharmacol. 2017;8(FEB):1–8.Google Scholar
  34. 34.
    Gogarten W, Aken H, Van Kessler P, Wulf H. Durchführung von Analgesie-und Anästhesieverfahren in der Geburtshilfe. Anästh Intensivmed. 2009;50:183–90.Google Scholar
  35. 35.
    Clemens KE, Quednau I, Heller AR, Klaschik E. Impact of cafedrine/theodrenaline (Akrinor(R)) on therapy of maternal hypotension during spinal anesthesia for Cesarean delivery: a retrospective study. Miner Ginecol. 2010;62(6):515–24.Google Scholar
  36. 36.
    Strümper D, Gogarten W, Durieux ME, Hartleb K, Van Aken H, Marcus MAE. Effects of cafedrine/theodrenaline, etilefrine and ephedrine on uterine blood flow during epidural-induced hypotension in pregnant sheep. Fetal Diagn Ther. 2005;20(5):377–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Crystal GJ, Salem MR. The Bainbridge and the “reverse” Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114:520–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Kyokong O, Charuluxananan S, Sriprajittichai P, Poomseetong T, Naksin P. The incidence and risk factors of hypotension and bradycardia associated with spinal anesthesia. J Med Assoc Thai. 2006;89:Suppl 3.Google Scholar
  39. 39.
    Somboonviboon W, Kyokong O, Charuluxananan S, Narasethakamol A. Incidence and risk factors of hypotension and bradycardia after spinal anesthesia for cesarean section. J Med Assoc Thai. 2008;91(2):181–7.PubMedGoogle Scholar
  40. 40.
    Brenck F, Hartmann B, Katzer C, Obaid R, Bruggmann D, Benson M, Röhrig R, Junger A. Hypotension after spinal anesthesia for cesarean section: identification of risk factors using an anesthesia information management system. J Clin Monit Comput. 2009;23(2):85–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Esposito K, Marfella R, Gualdiero P, Carusone C, Pontillo A, Giugliano G, Nicoletti G, Giugliano D. Sympathovagal balance, nighttime blood pressure, and QT intervals in normotensive obese women. Obes Res. 2003;11(5):653–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Maayan-Metzger A, Schushan-Eisen I, Todris L, Etchin A, Kuint J. Maternal hypotension during elective cesarean section and short-term neonatal outcome. Am J Obstet Gynecol. 2010;202:1.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  • Lutz Kaufner
    • 1
  • A. Karekla
    • 2
  • A. Henkelmann
    • 1
  • S. Welfle
    • 2
  • K. von Weizsäcker
    • 3
  • L. Hellmeyer
    • 4
  • C. von Heymann
    • 1
    • 2
  1. 1.Department of Anaesthesiology and Intensive Care MedicineCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain TherapyVivantes Klinikum im FriedrichshainBerlinGermany
  3. 3.Department of ObstetricsCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Department of Obstetrics and GynaecologyVivantes Klinikum im FriedrichshainBerlinGermany

Personalised recommendations