Journal of Anesthesia

, Volume 32, Issue 2, pp 269–282 | Cite as

Waste anesthetic gas exposure and strategies for solution

Review Article
  • 126 Downloads

Abstract

As inhaled anesthetics are widely used, medical staff have inevitably suffered from exposure to anesthetic waste gases (WAGs). Whether chronic exposure to WAGs has an impact on the health of medical staff has long been a common concern, but conclusions are not consistent. Many measures and equipment have been proposed to reduce the concentration of WAGs as far as possible. This review aims to dissect the current exposure to WAGs and its influence on medical staff in the workplace and the environment, and summarize strategies to reduce WAGs.

Keywords

Waste anesthetic gases Occupational exposure Inhaled anesthetics 

Notes

Acknowledgements

We would like to thank Dr. Hong-Fei Zhang and Dr. Hong-Yi Lei who assisted our manuscript preparation. The work was supported by Guangdong Science and Technology Project (2014A020213018 to Ye-Hua Cai) and National Natural Science Foundation of China, Beijing, PR China (81471272 to Shi-Yuan Xu).

References

  1. 1.
    Conzen P, Nuscheler M. New inhalation anesthetics. Der Anaesthesist. 1996;45(8):674–93.PubMedGoogle Scholar
  2. 2.
    Van der Kooy J, De Graaf JP, Kolder ZM, Witters KD, Fitzpatrick E, Duvekot JJ, Dons-Sinke IJ, Steegers EA, Bonsel GJ. A newly developed scavenging system for administration of nitrous oxide during labour: safe occupational use. Acta Anaesthesiol Scand. 2012;56(7):920–5.PubMedGoogle Scholar
  3. 3.
    Chessor E, Verhoeven M, Hon CY, Teschke K. Evaluation of a modified scavenging system to reduce occupational exposure to nitrous oxide in labor and delivery rooms. J Occup Environ Hyg. 2005;2(6):314–22.PubMedGoogle Scholar
  4. 4.
    Wronska-Nofer T, Nofer JR, Jajte J, Dziubałtowska E, Szymczak W, Krajewski W, Wąsowicz W, Rydzynski K. Oxidative DNA damage and oxidative stress in subjects occupationally exposed to nitrous oxide (N(2)O). Mutat Res. 2012;731(1–2):58–63.PubMedGoogle Scholar
  5. 5.
    Baysal Z, Cengiz M, Ozgonul A, Cakir M, Celik H, Kocyigit A. Oxidative status and DNA damage in operating room personnel. Clin Biochem. 2009;42(3):189–93.PubMedGoogle Scholar
  6. 6.
    Sardas S, Izdes S, Ozcagli E, Kanbak O, Kadioglu E. The role of antioxidant supplementation in occupational exposure to waste anaesthetic gases. Int Arch Occup Environ Health. 2006;80(2):154–9.PubMedGoogle Scholar
  7. 7.
    Szyfter K, Stachecki I, Kostrzewska-Poczekaj M, Szaumkessel M, Szyfter-Harris J, Sobczynski P. Exposure to volatile anaesthetics is not followed by a massive induction of single-strand DNA breaks in operation theatre personnel. J Appl Genet. 2016;57(3):343–8.PubMedGoogle Scholar
  8. 8.
    Wronska-Nofer T, Palus J, Krajewski W, Jajte J, Kucharska M, Stetkiewicz J, Wasowicz W, Rydzyński K. DNA damage induced by nitrous oxide: study in medical personnel of operating rooms. Mutat Res. 2009;666(1–2):39–43.PubMedGoogle Scholar
  9. 9.
    Vodicka P, Musak L, Fiorito G, Vymetalkova V, Vodickova L, Naccarati A. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review. Mutat Res. 2016;770:26–34.PubMedGoogle Scholar
  10. 10.
    Lucio LMC, Braz MG, do Nascimento Junior P, Braz JRC, Braz LG. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Revista brasileira de anestesiologia. 2017. PubMed PMID: 28655457. Epub 2017/06/29. Riscos ocupacionais, danos no material genetico e estresse oxidativo frente a exposicao aos residuos de gases anestesicos. por.Google Scholar
  11. 11.
    Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2(5):1084–104.PubMedGoogle Scholar
  12. 12.
    Sivaci R, Kahraman A, Serteser M, Sahin DA, Dilek ON. Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clin Biochem. 2006;39(3):293–8.PubMedGoogle Scholar
  13. 13.
    Cohen EN, Bellville JW, Brown BW Jr. Anesthesia, pregnancy, and miscarriage: a study of operating room nurses and anesthetists. Anesthesiology. 1971;35(4):343–7.PubMedGoogle Scholar
  14. 14.
    American Society of Anesthesiologists. Occupational disease among operating room personnel: a national study. Report of an Ad Hoc Committee on the Effect of Trace Anesthetics on the Health of Operating Room Personnel, American Society of Anesthesiologists. Anesthesiology. 1974;41(4):321–40.Google Scholar
  15. 15.
    Pharoah PO, Alberman E, Doyle P, Chamberlain G. Outcome of pregnancy among women in anaesthetic practice. Lancet. 1977;1(8001):34–6.PubMedGoogle Scholar
  16. 16.
    National Institute for Occupational Safety and Health. Occupational Exposure to Waste Anesthetic Gases and Vapors: Criteria for a Recommended Standard. Cincinnati, Ohio, USA: US Department of Health, Education, and Welfare, Public Health Service, Centre for Disease Control, National Institute for Occupational Safety and Health. 1977. eng.Google Scholar
  17. 17.
    Korczynski RE. Anesthetic gas exposure in veterinary clinics. Appl Occup Environ Hyg. 1999;14(6):384–90 (PubMed PMID:10429733. Epub 2010/11/30. eng).PubMedGoogle Scholar
  18. 18.
    Boiano JM, Steege AL, Sweeney MH. Exposure control practices for administering nitrous oxide: a survey of dentists, dental hygienists, and dental assistants. J Occup Environ Hyg. 2017;14(6):409–16.PubMedGoogle Scholar
  19. 19.
    Asefzadeh S, Raeisi A, Mousavi A. Risk management status of waste anesthetic gases using ECRI Institute standards. Iran J Public Health. 2012;41(11):85–91.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Technische Regeln fur Gefahrstoffe (TRGS 900), BArbBl 2006/1, p. 41; BArbBl 2000/10, p. 34. eng.Google Scholar
  21. 21.
    Krajewski W, Kucharska M, Pilacik B, Fobker M, Stetkiewicz J, Nofer JR, Wronska-Nofer T. Impaired vitamin B12 metabolic status in healthcare workers occupationally exposed to nitrous oxide. Br J Anaesth. 2007;99(6):812–8.PubMedGoogle Scholar
  22. 22.
    Sharples A. Pollution: just a whiff of gas? Paediatr Anaesth. 2003;13(6):467–72 (PubMed PMID:12846702. Epub 2003/07/09. eng).PubMedGoogle Scholar
  23. 23.
    Guardino X, Rosell MG. NTP 606: Exposición laboral a gases anestésicos. Centro Nacional de Condiciones de Trabajo. Barcelona, Spain: Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales, 2001. http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/601a700/ntp_606.pdf.
  24. 24.
    2001. Cinncinatti, Ohio. American Conference of Governmental Industrial Hygien ists (ACGIH). TLVs and BEIs Based on the Documentation of the Threshold.Google Scholar
  25. 25.
    Anesthesiology branch of Chinese medical association. Expert consensus about processing anesthetic gas leak. J Clin Anesthesiol. 2009;25(3):194–6.Google Scholar
  26. 26.
    Kupczewska-Dobecka M, Socko R. [Assessment of health risk of sevoflurane and isoflurane exposure among surgical staff: a problem for employers]. Med Pr. 2006;57(6):557–66. PubMed PMID: 17533994. Epub 2007/05/31. Ocena ryzyka zwiazanego z narazeniem personelu medycznego na dzialanie sewofluranu i izofluranu, wziewnych srodkow anestetycznych–problem dla pracodawcow. pol.Google Scholar
  27. 27.
    Kucharska M, Wesolowski W. Assessment of occupational exposure of medical personnel to inhalatory anesthetics in Poland. Med Pr. 2014;65(1):43–54.PubMedGoogle Scholar
  28. 28.
    Rui-jun GAO, Zhen-yu HU, You-zhou SHEN, Wen-jing LI. Investigation on the contamination of halogenated anesthetic in operating rooms in shenzhen. J Clin Anesthesiol. 2013;29(09):887–9.Google Scholar
  29. 29.
    Sanabria Carretero P, Rodriguez Perez E, Jimenez Mateos E, Palomero Rodriguez E, Goldman Tarlousky L, Gilsanz Rodriguez F, Garcia Caballeroa J. Occupational exposure to nitrous oxide and sevoflurane during pediatric anesthesia: evaluation of an anesthetic gas extractor. Rev Esp Anestesiol Reanim. 2006;53(10):618–25.PubMedGoogle Scholar
  30. 30.
    Braz LG, Braz JR, Cavalcante GA, Souza KM, Lucio LM, Braz MG. [Comparison of waste anesthetic gases in operating rooms with or without an scavenging system in a Brazilian University Hospital]. Rev Bras Anestesiol. 2017. PubMed PMID:28259354. Epub 2017/03/06. Comparacao de residuos de gases anestesicos em salas de operacao com ou sem sistema de exaustao em hospital universitario brasileiro. por.Google Scholar
  31. 31.
    Mierdl S, Byhahn C, Abdel-Rahman U, Matheis G, Westphal K. Occupational exposure to inhalational anesthetics during cardiac surgery on cardiopulmonary bypass. Ann Thor Surg. 2003;75(6):1924–7 (discussion 7–8).Google Scholar
  32. 32.
    Westberg H, Egelrud L, Ohlson CG, Hygerth M, Lundholm C. Exposure to nitrous oxide in delivery suites at six Swedish hospitals. Int Arch Occup Environ Health. 2008;81(7):829–36.PubMedGoogle Scholar
  33. 33.
    Sackey PV, Martling CR, Nise G, Radell PJ. Ambient isoflurane pollution and isoflurane consumption during intensive care unit sedation with the Anesthetic Conserving Device. Crit Care Med. 2005;33(3):585–90.PubMedGoogle Scholar
  34. 34.
    Cheung SK, Ozelsel T, Rashiq S, Tsui BC. Postoperative environmental anesthetic vapour concentrations following removal of the airway device in the operating room versus the postanesthesia care unit. J Can Anesth. 2016;63(9):1016–21.Google Scholar
  35. 35.
    Herzog-Niescery J, Botteck NM, Vogelsang H, Gude P, Bartz H, Weber TP, Seipp HM. Occupational chronic sevoflurane exposure in the everyday reality of the anesthesia workplace. Anesth Analg. 2015;121(6):1519–28.PubMedGoogle Scholar
  36. 36.
    Sarkany P, Tanko B, Simon E, Gal J, Fulesdi B, Molnar C. Does standing or sitting position of the anesthesiologist in the operating theatre influence sevoflurane exposure during craniotomies? BMC Anesthesiol. 2016;16(1):120.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Schebesta K, Lorenz V, Schebesta EM, Horauf K, Gruber M, Kimberger O, Chiari A, Frass M, Krafft P. Exposure to anaesthetic trace gases during general anaesthesia: CobraPLA vs LMA classic. Acta Anaesthesiol Scand. 2010;54(7):848–54.PubMedGoogle Scholar
  38. 38.
    Gustorff B, Lorenzl N, Aram L, Krenn CG, Jobst BP, Hoerauf KH. Environmental monitoring of sevoflurane and nitrous oxide using the cuffed oropharyngeal airway. Anesth Analg. 2002;94(5):1244–8 (table of contents).PubMedGoogle Scholar
  39. 39.
    Tanko B, Molnar C, Budi T, Peto C, Novak L, Fulesdi B. The relative exposure of the operating room staff to sevoflurane during intracerebral surgery. Anesth Analg. 2009;109(4):1187–92.PubMedGoogle Scholar
  40. 40.
    Maroufi S, Gharavi M, Behnam M, Samadikuchaksaraei A. Nitrous oxide levels in operating and recovery rooms of Iranian hospitals. Iran J Public Health. 2011;40(2):75–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Walder B, Lauber R, Zbinden AM. Accuracy and cross-sensitivity of 10 different anesthetic gas monitors. J Clin Monit. 1993;9(5):364–73 (PubMed PMID:8106890. Epub 1993/11/01.eng).PubMedGoogle Scholar
  42. 42.
    Lucchini R, Belotti L, Cassitto MG, Faillace A, Margonari M, Micheloni G, Scapellato ML, Somenzi V, Spada T, Toffoletto F, Gilioli R. Neurobehavioral functions in operating theatre personnel: a multicenter study. Med Lav. 1997;88(5):396–405 (PubMed PMID: 9489303. Epub 1998/03/07.eng).PubMedGoogle Scholar
  43. 43.
    Accorsi A, Morrone B, Domenichini I, Valenti S, Raffi GB, Violante FS. Urinary sevoflurane and hexafluoro-isopropanol as biomarkers of low-level occupational exposure to sevoflurane. Int Arch Occup Environ Health. 2005;78(5):369–78 (PubMed PMID: 15864632. Epub 2005/05/03.eng).PubMedGoogle Scholar
  44. 44.
    Accorsi A, Valenti S, Barbieri A, Raffi GB, Violante FS. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels. Int Arch Occup Environ Health. 2003;76(2):129–36 (PubMed PMID:12733085. Epub 2003/05/07.eng).PubMedGoogle Scholar
  45. 45.
    Barbic F, Bagnati M, Basile M, Zanoli V, Carettoni L, Cassani C, Porta P, Fortina A, Mantovani C, Bellomo G. Urinary hexafluoroisopropanol in the assessment of occupational exposure to sevoflurane: methodologic features and critical points. G Ital Med Lav Ergon. 2003;25 Suppl(3):95–7 (PubMed PMID:14979101. Epub 2004/02/26). L’esafluoroisopropanolo urinario nella valutazione dell’esposizione professionale a sevofluorano: aspetti metodologici e punti critici.ita.Google Scholar
  46. 46.
    Raj N, Henderson KA, Hall JE, Aguilera IM, Harmer M, Hutchings A, Williams B. Evaluation of personal, environmental and biological exposure of paediatric anaesthetists to nitrous oxide and sevoflurane. Anaesthesia. 2003;58(7):630–6 (PubMed PMID: 12790811. Epub 2003/06/07.eng).PubMedGoogle Scholar
  47. 47.
    Scapellato ML, Carrieri M, Macca I, Salamon F, Trevisan A, Manno M, Bartolucci GB. Biomonitoring occupational sevoflurane exposure at low levels by urinary sevoflurane and hexafluoroisopropanol. Toxicol Lett. 2014;231(2):154–60 (PubMed PMID: 25455444. Epub 2014/12/03.eng).PubMedGoogle Scholar
  48. 48.
    Miller RD. Miller’s Anesthesia. Seventh Edition. Elsevier Inc: Saunders, 2015:633–66.Google Scholar
  49. 49.
    Smith FD. Management of exposure to waste anesthetic gases. AORN J. 2010;91(4):482–94.PubMedGoogle Scholar
  50. 50.
    Tran N, Elias J, Rosenberg T, Wylie D, Gaborieau D, Yassi A. Evaluation of waste anesthetic gases, monitoring strategies, and correlations between nitrous oxide levels and health symptoms. Am Ind Hyg Assoc J. 1994;55(1):36–41 (PubMed PMID:8116527. Epub 1994/01/01.eng).PubMedGoogle Scholar
  51. 51.
    Saurel-Cubizolles MJ, Estryn-Behar M, Maillard MF, Mugnier N, Masson A, Monod G. Neuropsychological symptoms and occupational exposure to anaesthetics. Br J Ind Med. 1992;49(4):276–81.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yilmaz S, Calbayram NC. Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: a systematic review of the human biomonitoring studies. J Clin Anesth. 2016;35:326–31 (PubMed PMID:27871551. Epub 2016/11/23.eng).PubMedGoogle Scholar
  53. 53.
    Costa Paes ER, Braz MG, Lima JT, Gomes da Silva MR, Bentes de Sousa L, Lima ES, Carvalho de Vasconcellos M, Cerqueira Braz JR. DNA damage and antioxidant status in medical residents occupationally exposed to waste anesthetic gases. Acta Cir Bras. 2014;29(4):280–6.PubMedGoogle Scholar
  54. 54.
    Turkan H, Aydin A, Sayal A. Effect of volatile anesthetics on oxidative stress due to occupational exposure. World J Surg. 2005;29(4):540–2.PubMedGoogle Scholar
  55. 55.
    El-Ebiary AA, Abuelfadl AA, Sarhan NI, Othman MM. Assessment of genotoxicity risk in operation room personnel by the alkaline comet assay. Hum Exp Toxicol. 2013;32(6):563–70.PubMedGoogle Scholar
  56. 56.
    Chandrasekhar M. Evaluation of genetic damage in operating room personnel exposed to anaesthetic gases. Mutagenesis. 2006;21(4):249–54.PubMedGoogle Scholar
  57. 57.
    Horasanli E, Acar A, Muslu B, Cayonu M, Cimencan M, Kayabasi S. Assessment of nasal mucociliary clearance in anesthetists. Turk J Med Sci. 2015;45(1):197–201.PubMedGoogle Scholar
  58. 58.
    Rozgaj R, Kasuba V, Jazbec A. Preliminary study of cytogenetic damage in personnel exposed to anesthetic gases. Mutagenesis. 2001;16(2):139–43.PubMedGoogle Scholar
  59. 59.
    Szyfter K, Szulc R, Mikstacki A, Stachecki I, Rydzanicz M, Jaloszynski P. Genotoxicity of inhalation anaesthetics: DNA lesions generated by sevoflurane in vitro and in vivo. J Appl Genet. 2004;45(3):369–74.PubMedGoogle Scholar
  60. 60.
    Wiesner G, Hoerauf K, Schroegendorfer K, Sobczynski P, Harth M, Ruediger HW. High-level, but not low-level, occupational exposure to inhaled anesthetics is associated with genotoxicity in the micronucleus assay. Anesth Analg. 2001;92(1):118–22.PubMedGoogle Scholar
  61. 61.
    Shirangi A, Fritschi L, Holman CD. Associations of unscavenged anesthetic gases and long working hours with preterm delivery in female veterinarians. Obstet Gynecol. 2009;113(5):1008–17 (PubMed PMID:19384115. Epub 2009/04/23.eng).PubMedGoogle Scholar
  62. 62.
    Koblin DD, Waskell L, Watson JE, Stokstad EL, Eger EI 2nd. Nitrous oxide inactivates methionine synthetase in human liver. Anesth Analg. 1982;61(2):75–8 (PubMed PMID:7198880. Epub 1982/02/01.eng).PubMedGoogle Scholar
  63. 63.
    Sweeney B, Bingham RM, Amos RJ, Petty AC, Cole PV. Toxicity of bone marrow in dentists exposed to nitrous oxide. Br Med J Clin Res Ed. 1985;291(6495):567–9 (PubMed PMID:3929875. Pubmed Central PMCID:PMC1418219. Epub 1985/08/31.eng).PubMedPubMedCentralGoogle Scholar
  64. 64.
    Souza KM, Braz LG, Nogueira FR, Souza MB, Bincoleto LF, Aun AG, Corrente JE, Carvalho L, Braz JRC, Braz MG. Occupational exposure to anesthetics leads to genomic instability, cytotoxicity and proliferative changes. Mutat Res. 2016;791–792:42–8.PubMedGoogle Scholar
  65. 65.
    Nagella AB, Ravishankar M, Hemanth KVR. Anaesthesia practice and reproductive outcomes: facts unveiled. Indian J Anaesth. 2015;59(11):706–14.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Rosenberg PH, Vanttinen H. Occupational hazards to reproduction and health in anaesthetists and paediatricians. Acta Anaesthesiol Scand. 1978;22(3):202–7.PubMedGoogle Scholar
  67. 67.
    Guirguis SS, Pelmear PL, Roy ML, Wong L. Health effects associated with exposure to anaesthetic gases in Ontario hospital personnel. Br J Ind Med. 1990;47(7):490–7.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Saurel-Cubizolles MJ, Hays M, Estryn-Behar M. Work in operating rooms and pregnancy outcome among nurses. Int Arch Occup Environ Health. 1994;66(4):235–41 (Epub 1994/01/01.eng).PubMedGoogle Scholar
  69. 69.
    Teschke K, Abanto Z, Arbour L, Beking K, Chow Y, Gallagher RP, Jong B, Le ND, Ratner PA, Spinelli JJ, Dimich-Ward H. Exposure to anesthetic gases and congenital anomalies in offspring of female registered nurses. Am J Ind Med. 2011;54(2):118–27.PubMedGoogle Scholar
  70. 70.
    Gauger VT, Voepel-Lewis T, Rubin P, Kostrzewa A, Tait AR. A survey of obstetric complications and pregnancy outcomes in paediatric and nonpaediatric anaesthesiologists. Paediatr Anaesth. 2003;13(6):490–5.PubMedGoogle Scholar
  71. 71.
    Gupta D, Kaminski E, McKelvey G, Wang H. Firstborn offspring sex ratio is skewed towards female offspring in anesthesia care providers: a questionnaire-based nationwide study from United States. J Anaesthesiol Clin Pharmacol. 2013;29(2):221–7.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Gupta D. Firstborn female offsprings are significantly more common among Indian anaesthesiologists as compared to national child sex ratio. Indian J Anaesth. 2016;60(3):224.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Gupta D, McKelvey G, Kaminski E, Zestos MM. Does exposure to inhalation anesthesia gases change the ratio of X-bearing sperms and Y-bearing Sperms? A worth exploring project into an uncharted domain. Med Hypotheses. 2016;94:68–73.PubMedGoogle Scholar
  74. 74.
    Nilsson R, Bjordal C, Andersson M, Bjordal J, Nyberg A, Welin B, Willman A. Health risks and occupational exposure to volatile anaesthetics—a review with a systematic approach. J Clin Nurs. 2005;14(2):173–86.PubMedGoogle Scholar
  75. 75.
    Molina Aragones JM, Ayora Ayora A, Barbara Ribalta A, Gasco Parici A, Medina Lavela JA, Sol Vidiella J, Sol Lopez MH. Occupational exposure to volatile anaesthetics: a systematic review. Occup Med. 2016;66(3):202–7.Google Scholar
  76. 76.
    Quansah R, Jaakkola JJ. Occupational exposures and adverse pregnancy outcomes among nurses: a systematic review and meta-analysis. J Womens Health (Larchmt). 2010;19(10):1851–62.Google Scholar
  77. 77.
    Volquind D, Bagatini A, Monteiro GM, Londero JR, Benvenutti GD. Occupational hazards and diseases related to the practice of anesthesiology. Braz J Anesthesiol. 2013;63(2):227–32 (PubMed PMID:24565132. Epub 2014/02/26.eng).Google Scholar
  78. 78.
    Protocolos de vigilància sanitaria especifca. Agentes anestésicos inhalatorios. Madrid, Spain: Comisión de salud pública. Consejo interterritorial del sistema nacional de salud. Ministerio de Sanidad y Consumo, 2011. http://www.msssi.gob.es/ciudadanos/saludAmbLaboral/docs/anestesicos.pdf.
  79. 79.
    Fox JW, Fox EJ, Villanueva R. Letter: stratospheric ozone destruction and halogenated anaesthetics. Lancet. 1975;1(7911):864.PubMedGoogle Scholar
  80. 80.
    Andersen MPS, Nielsen OJ, Wallington TJ, Karpichev B, Sander SP. Assessing the impact on global climate from general anesthetic gases. Anesth Analg. 2012;5:1081–5.Google Scholar
  81. 81.
    Dale O, Dale T. [Anesthetic gases, the ozone layer and the greenhouse effect. How harmful are the anesthetic emissions for the global environment?]. Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke. 1991;111(17):2115–7. PubMed PMID:1871748. Epub 1991/06/30. Narkosegasser, ozonlaget og drivhuseffekten. Hvor skadelige er anestesiutslippene for det globale miljo.Google Scholar
  82. 82.
    Ryan SM, Nielsen CJ. Global warming potential of inhaled anesthetics: application to clinical use. Anesth Analg. 2010;111(1):92–8.PubMedGoogle Scholar
  83. 83.
    Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg. 2012;114(5):1086–90.PubMedGoogle Scholar
  84. 84.
    Ishizawa Y. Special article: general anesthetic gases and the global environment. Anesth Analg. 2011;112(1):213–7.PubMedGoogle Scholar
  85. 85.
    Whitcher CE, Cohen EN, Trudell JR. Chronic exposure to anesthetic gases in the operating room. Anesthesiology. 1971;35(4):348–53.PubMedGoogle Scholar
  86. 86.
    Krajewski W, Kucharska M, Wesolowski W, Stetkiewicz J, Wronska-Nofer T. Occupational exposure to nitrous oxide—the role of scavenging and ventilation systems in reducing the exposure level in operating rooms. Int J Hyg Environ Health. 2007;210(2):133–8.PubMedGoogle Scholar
  87. 87.
    McGlothlin JD, Moenning JE, Cole SS. Evaluation and control of waste anesthetic gases in the postanesthesia care unit. J Perianesth Nurs. 2014;29(4):298–312.PubMedGoogle Scholar
  88. 88.
    Ai-ling L, Li-na Y, Rong S, Hai-yang M, Yong-hui W. The Influence of trace anesthetic gases on medical staff in laminar flow rooms with different levels. Prog Modern Biomed. 2014;14(32):6325–31.Google Scholar
  89. 89.
    Bilmen JG, Gillies RI. Clarifying the role of activated charcoal filters in preparing an anaesthetic workstation for malignant hyperthermia-susceptible patients. Anaesth Intensive Care. 2014;42(1):51–8 (PubMed PMID:24471664. Epub 2014/01/30.eng).PubMedGoogle Scholar
  90. 90.
    Johnstone RD, Willis BA, Vaughan RS. The reduction of pollution. A simple approach to the reduction of pollution in the dental operating theatre. Anaesthesia. 1977;32(8):790–3 (PubMed PMID:920922. Epub 1977/09/01.eng).PubMedGoogle Scholar
  91. 91.
    Fay J. A case report of personal exposures to isoflurane during animal anesthesia procedures. J Occup Environ Hyg. 2017.  https://doi.org/10.1080/15459624. (PubMed PMID:29083962. Epub 2017/10/31.eng) Google Scholar
  92. 92.
    Pickworth T, Jerath A, DeVine R, Kherani N, Wasowicz M. The scavenging of volatile anesthetic agents in the cardiovascular intensive care unit environment: a technical report. Can J Anaesth. 2013;60(1):38–43 (PubMed PMID:23132045. Epub 2012/11/08.eng).PubMedGoogle Scholar
  93. 93.
    Soukup J, Scharff K, Kubosch K, Pohl C, Bomplitz M, Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically ill patients. J Crit Care. 2009;24(4):535–44 (PubMed PMID:19327951. Epub 2009/03/31.eng).PubMedGoogle Scholar
  94. 94.
    Wong K, Wasowicz M, Grewal D, Fowler T, Ng 2, Ferguson ND, Steel A, Jerath A. Efficacy of a simple scavenging system for long-term critical care sedation using volatile agent-based anesthesia. Can J Anaesth. 2016;63(5):630–2 (PubMed PMID:26670802. Epub 2015/12/17.eng).Google Scholar
  95. 95.
    Hasei M, Hirata T, Nishihara H, Tanigami H, Takashina M, Mori T. Occupational exposure of operating room staff to anesthetic gases during inhaled induction—a comparison with intravenous anesthesia induction. Masui. 2003;52(4):394–8.PubMedGoogle Scholar
  96. 96.
    Hoerauf KH, Wallner T, Akca O, Taslimi R, Sessler DI. Exposure to sevoflurane and nitrous oxide during four different methods of anesthetic induction. Anesth Analg. 1999;88(4):925–9.PubMedGoogle Scholar
  97. 97.
    Kurrek MM, Dain SL, Kiss A. Technical communication: the effect of the double mask on anesthetic waste gas levels during pediatric mask inductions in dental offices. Anesth Analg. 2013;117(1):43–6.PubMedGoogle Scholar
  98. 98.
    Freilich MM, Alexander L, Sandor GK, Judd P. Effectiveness of 2 scavenger mask systems for reducing exposure to nitrous oxide in a hospital-based pediatric dental clinic: a pilot study. J Can Dent Assoc. 2007;73(7):615.PubMedGoogle Scholar
  99. 99.
    Panni MK, Corn SB. The use of a uniquely designed anesthetic scavenging hood to reduce operating room anesthetic gas contamination during general anesthesia. Anesth Analg. 2002;95(3):656–60 (table of contents).PubMedGoogle Scholar
  100. 100.
    Friembichler S, Coppens P, Sare H, Moens Y. A scavenging double mask to reduce workplace contamination during mask induction of inhalation anesthesia in dogs. Acta Vet Scand. 2011;53:1.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Hoerauf KH, Koller C, Jakob W, Taeger K, Hobbhahn J. Isoflurane waste gas exposure during general anaesthesia: the laryngeal mask compared with tracheal intubation. Br J Anaesth. 1996;77(2):189–93.PubMedGoogle Scholar
  102. 102.
    Smith JC, Robertson LD, Auhll A, March TJ, Derring C, Bolon B. Endotracheal tubes versus laryngeal mask airways in rabbit inhalation anesthesia: ease of use and waste gas emissions. Contemp Top Lab Anim Sci. 2004;43(4):22–5.PubMedGoogle Scholar
  103. 103.
    Feldman JM. Managing fresh gas flow to reduce environmental contamination. Anesth Analg. 2012;114(5):1093–101.PubMedGoogle Scholar
  104. 104.
    Brattwall M, Warren-Stomberg M, Hesselvik F, Jakobsson J. Brief review: theory and practice of minimal fresh gas flow anesthesia. Can J Anaesth. 2012;59(8):785–97.PubMedGoogle Scholar
  105. 105.
    Kennedy RR, French RA. Changing patterns in anesthetic fresh gas flow rates over 5 years in a teaching hospital. Anesth Analg. 2008;106(5):1487–90 (table of contents).PubMedGoogle Scholar
  106. 106.
    Weinberg L, Story D, Nam J, McNicol L. Pharmacoeconomics of volatile inhalational anaesthetic agents: an 11-year retrospective analysis. Anaesth Intensive Care. 2010;38(5):849–54.PubMedGoogle Scholar
  107. 107.
    Dexter F, Maguire D, Epstein RH. Observational study of anaesthetists’ fresh gas flow rates during anaesthesia with desflurane, isoflurane and sevoflurane. Anaesth Intensive Care. 2011;39(3):460–4.PubMedGoogle Scholar
  108. 108.
    Kan E, Undeger U, Bali M, Basaran N. Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of Vitamin E supplementation. Mutat Res. 2002;520(1–2):151–9.PubMedGoogle Scholar
  109. 109.
    Uzun S, Saricaoglu F, Ayhan B, Topatan B, Akinci SB, Aypar U. Homocysteine levels and bad obstetric outcome among female operating room personnel occupationally exposed to nitrous oxide. Bratisl Lek Listy. 2014;115(6):372–6.PubMedGoogle Scholar
  110. 110.
    Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science. 1980;210(4472):899–901 (PubMed PMID:7434002. Epub 1980/11/21.eng).PubMedGoogle Scholar
  111. 111.
    Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S. The blood-gas partition coefficient of xenon may be lower than generally accepted. Br J Anaesth. 1998;80(2):255–6 (PubMed PMID:9602599. Epub 1998/05/29.eng).PubMedGoogle Scholar
  112. 112.
    Derwall M, Coburn M, Rex S, Hein M, Rossaint R, Fries M. Xenon: recent developments and future perspectives. Minerva Anestesiol. 2009;75(1–2):37–45 (PubMed PMID:18475253. Epub 2008/05/14.eng).PubMedGoogle Scholar
  113. 113.
    Wappler F, Rossaint R, Baumert J, Scholz J, Tonner PH, van Aken H, Berendes E, Klein J, Gommers D, Hammerle A, Franke A, Hofmann T, Schulte Esch J. Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology. 2007;106(3):463–71 (PubMed PMID:17325504. Epub 2007/02/28.eng).PubMedGoogle Scholar
  114. 114.
    Rossaint R, Reyle-Hahn M, Schulte Am Esch J, Scholz J, Scherpereel P, Vallet B, Giunta F, Del Turco M, Erdmann W, Tenbrinck R, Hammerle AF, Nagele P. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 2003;98(1):6–13 (PubMed PMID:12502972. Epub 2002/12/28.eng).PubMedGoogle Scholar
  115. 115.
    Cullen SC, Eger EI 2nd, Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology. 1969;31(4):305–9 (PubMed PMID:5811596. Epub 1969/10/01.eng).PubMedGoogle Scholar
  116. 116.
    Rawat S, Dingley J. Closed-circuit xenon delivery using a standard anesthesia workstation. Anesth Analg. 2010;110(1):101–9.PubMedGoogle Scholar
  117. 117.
    Roehl AB, Goetzenich A, Rossaint R, Zoremba N, Hein M. A practical rule for optimal flows for xenon anaesthesia in a semi-closed anaesthesia circuit. Eur J Anaesthesiol. 2010;27(7):660–5.PubMedGoogle Scholar
  118. 118.
    Boiano JM, Steege AL. Precautionary practices for administering anesthetic gases: A survey of physician anesthesiologists, nurse anesthetists and anesthesiologist assistants. J Occup Environ Hyg. 2016;13(10):782–93 (Pubmed Central PMCID:PMC4994980. Epub 2016/08/20.eng).PubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina

Personalised recommendations