Journal of Anesthesia

, Volume 33, Issue 1, pp 140–147 | Cite as

Spinal myoclonus following neuraxial anesthesia: a literature review

  • Tohru ShiratoriEmail author
  • Kunihisa Hotta
  • Masaaki Satoh
Review Article


Spinal myoclonus (SM) is a rare neurologic movement disorder following neuraxial anesthesia (NA). SM following NA (SM-NA) has insufficient clinical information and its pathogenesis remains to be elucidated. The aim of this review article was to summarize the past cases and consider SM-NA pathophysiology. Based on our PubMed search, it was revealed that SM-NA develops within several hours after neuraxial local anesthetic (LA) administration and resolves in a day without leaving neurologic compilations. It occurs primarily in the lower extremities, but can sometimes spread upward and affect the upper extremities and trunk. Although statistical adjustments are indispensable, analysis of the previous cases provided important facts that seem to be related with the mechanism of SM-NA. The frequently used LAs for spinal anesthesia were hyperbaric. SM-NA occurrence was more frequent in women. After initiation of spinal anesthesia, intrathecal hyperbaric LA distributes cephalad. In the LA elimination process, the large concentration differences in intrathecal LA may induce the partially functioning spinal neurons, resulting in myoclonus generation. The morphological features of the lumbar spine in women can predispose to a higher LA concentration difference. SM-NA is an unpredictable and rare neural complication following NA and should be confirmed by basic experiments and large-scale researches.


Movement disorder Involuntary movement Myoclonus Local anesthetic Neuraxial anesthesia 



This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors. We gratefully acknowledge Toyomi Kamesaki (Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University). The authors also thank the Clinical Research Support Team Jichi (CRST) in Jichi Medical University for their advice.

Authors’ contributions

TS, KH, and MS wrote the manuscript. KH and MS revised the manuscript. KH supervised this work. TS prepared manuscript files. All authors reviewed and approved the final manuscript for submission.


  1. 1.
    Brull R, Macfarlane AJR, Chan VWS. Spinal, epidural, and caudal anesthesia. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Cohen NH, Young WL, editors. Miller’s anesthesia, 2-volume set. 8th ed. Philadelphia: Elsevier; 2014. pp. 1684–720.Google Scholar
  2. 2.
    Mordecai MM, Brull SJ. Spinal anesthesia. Curr Opin Anaesthesiol. 2005;18:527–33.CrossRefGoogle Scholar
  3. 3.
    Brull R, McCartney CJL, Chan VWS, El-Beheiry H. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg. 2007;104:965–74.CrossRefGoogle Scholar
  4. 4.
    Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in Sweden 1990–1999. Anesthesiology. 2004;101:950–9.CrossRefGoogle Scholar
  5. 5.
    Shiratori T, Hotta K, Satoh M, Kondo N, Ikeda J, Sasao S. A case of spinal myoclonus in a patient with elective cesarean section. JA Clin Rep. 2018;4:47. Scholar
  6. 6.
    Termsarasab P, Frucht SJ. Myoclonus. In: Louis ED, Mayer SA, Rowland LP, editors. Merritt’s neurology. 13th ed. Philadelphia: Wolters Kluwer; 2016. pp. 660–5.Google Scholar
  7. 7.
    Kojovic M, Cordivari C, Bhatia K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther Adv Neurol Disord. 2011;4:47–62. Scholar
  8. 8.
    Fahn S, Frucht S. Myoclonus. In: Rowland LP, Pedley TA, editors. Merritt’s neurology. 12th ed. Philadelphia: Wolters Kluwer; 2010. pp. 732–3.Google Scholar
  9. 9.
    Rothwell JC. Pathophysiology of spinal myoclonus. Adv Neurol. 2002;89:137–44.Google Scholar
  10. 10.
    Hoehn MM, Cherington M. Spinal myoclonus. Neurology. 1977;27:942–6.CrossRefGoogle Scholar
  11. 11.
    Termsarasab P, Thammongkolchai T, Frucht SJ. Spinal-generated movement disorders: a clinical review. J Clin Mov Disord. 2015;2:18.CrossRefGoogle Scholar
  12. 12.
    Fox EJ, Villanueva R, Schutta HS. Myoclonus following spinal anesthesia. Neurology. 1979;29:379–80.CrossRefGoogle Scholar
  13. 13.
    Watanabe S, Sakai K, Ono Y, Seino H, Naito H. Alternating periodic leg movement induced by spinal anesthesia in an elderly male. Anesth Analg. 1987;66:1031–2.CrossRefGoogle Scholar
  14. 14.
    Watanabe S, Ono A, Naito H. Periodic leg movements during either epidural or spinal anesthesia in an elderly man without sleep-related (nocturnal) myoclonus. Sleep. 1990;13:262–6.Google Scholar
  15. 15.
    Nadkarni AV, Tondare AS. Localized clonic convulsions after spinal anesthesia with lidocaine and epinephrine. Anesth Analg. 1982;61:945–7.CrossRefGoogle Scholar
  16. 16.
    Almedallah DK, Alshamlan DY, Shariff EM. Acute opioid-induced myoclonic reaction after use of fentanyl as an anesthetic drug for an emergency cesarean section. Case Rep Neurol. 2018;10:130–4. Scholar
  17. 17.
    Lev A, Korn-Lubezki I, Steiner-Birmanns B, Samueloff A, Gozal Y, Ioscovich A. Prolonged propriospinal myoclonus following spinal anesthesia for cesarean section: case report and literature review. Arch Gynecol Obstet. 2012;286:271–2.CrossRefGoogle Scholar
  18. 18.
    Fores Novales B, Aguilera Celorrio L. Spinal myoclonus following intrathecal anaesthesia with prilocaine. Anaesth Intensive Care. 2009;37:498–9.Google Scholar
  19. 19.
    Lin CS, Wei-Hung C, Lee YW. Transient spinal myoclonus after spinal anaesthesia with bupivacaine in the perioperation period. Anaesthesist. 2008;57:518.CrossRefGoogle Scholar
  20. 20.
    Lee JJ, Hwang SM, Lee JS, Jang JS, Lim S-Y, Hong SJ. Recurrent spinal myoclonus after two episodes of spinal anesthesia at a 1-year interval—a case report. Korean J Anesthesiol. 2010;59 Suppl:62–4.CrossRefGoogle Scholar
  21. 21.
    Abrão J, Bianco MP, Roma W, Krippa JES, Hallak JE. Spinal myoclonus after subarachnoid anesthesia with bupivacaine. Rev Bras Anestesiol. 2011;61:619–23.CrossRefGoogle Scholar
  22. 22.
    Kösem B, Kılınç H. An unusual complication of anesthesia: unilateral spinal myoclonus. Agri. 2017;29:90–1.Google Scholar
  23. 23.
    Bamgbade OA, Alfa JA, Khalaf WM, Zuokumor AP. Central neuraxial anaesthesia presenting with spinal myoclonus in the perioperative period: a case series. J Med Case Reports. 2009;3:7293.CrossRefGoogle Scholar
  24. 24.
    Zamidei L, Bandini M, Michelagnoli G, Campostrini R, Consales G. Propriospinal myoclonus following intrathecal bupivacaine in hip surgery: a case report. Minerva Anestesiol. 2010;76:290–3.Google Scholar
  25. 25.
    Ji TT, Shih CK, Hsieh YJ, Sun WZ. Desultory propriospinal myoclonus after epidural analgesia in a healthy parturient. Int J Obstet Anesth. 2015;24:285–6.CrossRefGoogle Scholar
  26. 26.
    Celik Y, Bekir Demirel C, Karaca S, Kose Y. Transient segmental spinal myoclonus due to spinal anaesthesia with bupivacaine. J Postgrad Med. 2003;49:286.Google Scholar
  27. 27.
    Nakamoto T, Hirota K, Iwai T, Shingu K. Complete resolution of myoclonus-like involuntary movements under subarachnoid block after midazolam administration in a patient undergoing cesarean section: a case report. Korean J Anesthesiol. 2015;68:193–5.CrossRefGoogle Scholar
  28. 28.
    Kang HY, Lee SW, Hong EP, Sim YH, Lee S-M, Park SW, Kang J-M. Myoclonus-like involuntary movements following cesarean delivery epidural anesthesia. J Clin Anesth. 2016;34:392–4.CrossRefGoogle Scholar
  29. 29.
    Alfa JA, Bamgbade OA. Acute myoclonus following spinal anaesthesia. Eur J Anaesthesiol. 2008;25:256–7.CrossRefGoogle Scholar
  30. 30.
    van der Salm SMA, Erro R, Cordivari C, Edwards MJ, Koelman JHTM, van den Ende T, Bhatia KP, van Rootselaar A-F, Brown P, Tijssen MAJ. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology. 2014;83:1862–70. Scholar
  31. 31.
    Oguri T, Hisatomi K, Kawashima S, Ueki Y, Tachibana N, Matsukawa N. Postsurgical propriospinal myoclonus emerging at wake to sleep transition. Sleep Med. 2014;15:152–4.CrossRefGoogle Scholar
  32. 32.
    Hachisuka K, Ogata H, Kohshi K. Post-operative paraplegia with spinal myoclonus possibly caused by epidural anaesthesia: case report. Paraplegia. 1991;29:131–6.Google Scholar
  33. 33.
    Dreskin S, Bajwa ZH, Lehmann L, Warfield CA. Polymyoclonus resulting from possible accidental subdural injection of local anesthetic. Anesth Analg. 1997;84:692–3.Google Scholar
  34. 34.
    Menezes FV, Venkat N. Spinal myoclonus following combined spinal-epidural anaesthesia for caesarean section. Anaesthesia. 2006;61:597–600.CrossRefGoogle Scholar
  35. 35.
    Ford B, Pullman SL, Khandji A, Goodman R. Spinal myoclonus induced by an intrathecal catheter. Mov Disord. 1997;12:1042–5.CrossRefGoogle Scholar
  36. 36.
    Wong SSC, Qiu Q, Cheung CW. Segmental spinal myoclonus complicating lumbar transforaminal epidural steroid injection. Reg Anesth Pain Med. 2018;43:554–6. Scholar
  37. 37.
    Parkinson SK, Bailey SL, Little WL, Mueller JB. Myoclonic seizure activity with chronic high-dose spinal opioid administration. Anesthesiology. 1990;72:743–5.CrossRefGoogle Scholar
  38. 38.
    Cartwright PD, Hesse C, Jackson AO. Myoclonic spasms following intrathecal diamorphine. J Pain Symp Manage. 1993;8:492–5.CrossRefGoogle Scholar
  39. 39.
    Kloke M, Bingel U, Seeber S. Complications of spinal opioid therapy: myoclonus, spastic muscle tone and spinal jerking. Support Care Cancer. 1994;2:249–52.CrossRefGoogle Scholar
  40. 40.
    Jeon Y, Baek SU, Yeo JS. Spinal myoclonus developed during cervical epidural drug infusion in postherpetic neuralgia patient. Korean J Pain. 2011;24:169–71.CrossRefGoogle Scholar
  41. 41.
    Batra YK, Rajeev S, Lokesh VC, Rao KLN. Spinal myoclonus associated with intrathecal bupivacaine and fentanyl in an infant. Can J Anaesth. 2007;54:587–8.CrossRefGoogle Scholar
  42. 42.
    Jankovic J, Lang AE. Movement disorders: diagnosis and assessment. In: Daroff RB, Fenichel GM, Jankovic J, Mazziotta JC, editors. Bradley’s neurology in clinical practice. 6th ed. Philadelphia: Elsevier; 2012. pp. 230–59.CrossRefGoogle Scholar
  43. 43.
    Juvin L, Simmers J, Morin D. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci. 2005;25:6025–35.CrossRefGoogle Scholar
  44. 44.
    Cohen EN. Distribution of local anesthetic agents in the neuraxis of the dog. Anesthesiology. 1968;29:1002–5.CrossRefGoogle Scholar
  45. 45.
    Park CK, Choi HY, Oh IY, Kim MS. Acute dystonia by droperidol during intravenous patient-controlled analgesia in young patients. J Korean Med Sci. 2002;17:715–7.CrossRefGoogle Scholar
  46. 46.
    Melnick BM. Extrapyramidal reactions to low-dose droperidol. Anesthesiology. 1988;69:424–6.CrossRefGoogle Scholar
  47. 47.
    Fahn S. Dystonia. In: Louis ED, Mayer SA, Rowland LP, editors. Merritt’s neurology. 13th ed. Philadelphia: Wolters Kluwer; 2016. pp. 644–56.Google Scholar
  48. 48.
    Kang UJ, Burke RE, Fahn S. Tardive dyskinesia and other neuroleptic-induced syndromes. In: Louis ED, Mayer SA, Rowland LP, editors. Merritt’s neurology. 13th ed. Philadelphia: Wolters Kluwer; 2016. pp. 686–90.Google Scholar
  49. 49.
    Kitahara T, Kuri S, Yoshida J. The spread of drugs used for spinal anesthesia. Anesthesiology. 1956;17:205–8.CrossRefGoogle Scholar
  50. 50.
    Hay O, Dar G, Abbas J, Stein D, May H, Masharawi Y, Peled N, Hershkovitz I. The lumbar lordosis in males and females, revisited. PLoS ONE. 2015;10:e0133685.CrossRefGoogle Scholar
  51. 51.
    Schiffer E, Van Gessel E, Gamulin Z. Influence of sex on cerebrospinal fluid density in adults. Br J Anaesth. 1999;83:943–4.CrossRefGoogle Scholar
  52. 52.
    Yuan H, Goto N, Goto J, Shiraishi N, Shimada S. Sexual dimorphism of the human spinal cord in the aging process. Okajimas Folia Anat Jpn. 1999;76:241–6.CrossRefGoogle Scholar
  53. 53.
    Yuan H, Goto N, Akita H, Goto J, Jīn SR. Sexual dimorphism of the motoneurons in the human spinal cord. Okajimas Folia Anat Jpn. 2000;77:143–8.CrossRefGoogle Scholar
  54. 54.
    Papinutto N, Schlaeger R, Panara V, Zhu AH, Caverzasi E, Stern WA, Hauser SL, Henry RG. Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: a 2D phase sensitive inversion recovery imaging study. PloS One. 2015;10:e0118576.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyIna Central HospitalInaJapan
  2. 2.Department of Anesthesiology and Critical Care MedicineJichi Medical UniversityShimotsukeJapan

Personalised recommendations