Advertisement

Comprehensive analysis of genetic aberrations linked to tumorigenesis in regenerative nodules of liver cirrhosis

  • Soo Ki Kim
  • Haruhiko Takeda
  • Atsushi Takai
  • Tomonori Matsumoto
  • Nobuyuki Kakiuchi
  • Akira Yokoyama
  • Kenichi Yoshida
  • Toshimi Kaido
  • Shinji Uemoto
  • Sachiko Minamiguchi
  • Hironori Haga
  • Yuichi Shiraishi
  • Satoru Miyano
  • Hiroshi Seno
  • Seishi Ogawa
  • Hiroyuki MarusawaEmail author
Original Article—Liver, Pancreas, and Biliary Tract

Abstract

Background

Hepatocellular carcinoma (HCC) recurrently develops in cirrhotic liver containing a number of regenerative nodules (RNs). However, the biological tumorigenic potential of RNs is still unclear. To uncover the molecular bases of tumorigenesis in liver cirrhosis, we investigated the genetic aberrations in RNs of cirrhotic tissues using next-generation sequencing.

Methods

We isolated 205 RNs and 7 HCC tissues from the whole explanted livers of 10 randomly selected patients who had undergone living-donor liver transplantation. Whole-exome sequencing and additional targeted deep sequencing on 30 selected HCC-related genes were conducted to reveal the mutational landscape of RNs and HCCs.

Results

Whole-exome sequencing demonstrated that RNs frequently harbored relatively high-abundance genetic alterations, suggesting a clonal structure of each RN in cirrhotic liver. The mutation signature observed in RNs was similar to those determined in HCC, characterized by a predominance of C>T transitions, followed by T>C and C>A mutations. Targeted deep sequencing analyses of RNs identified nonsynonymous low-abundance mutations in various tumor-related genes, including TP53 and ARID1A. In contrast, TERT promoter mutations were not detected in any of the RNs examined. Consistently, TERT expression levels in RNs were comparable to those in normal livers, whereas every HCC tissue demonstrated an elevated level of TERT expression.

Conclusion

Analyses of RNs constructing cirrhotic liver indicated that a variety of genetic aberrations accumulate in the cirrhotic liver before the development of clinically and histologically overt HCC. These aberrations in RNs could provide the basis of tumorigenesis in patients with liver cirrhosis.

Keywords

Hepatocarcinogenesis Liver cirrhosis TERT Targeted deep sequencing Whole-exome sequencing 

Notes

Acknowledgements

We thank Drs. Yoshihide Ueda, Ken Takahashi, Yuji Eso, Tadashi Inuzuka, Tomoyuki Goto, Aya Mizuguchi, Minami Lee, Takahiro Shimizu, Eriko Iguchi, Fumiyasu Nakamura, Soichi Arasawa, Ken Kumagai, Hiromichi Suzuki, and Keisuke Kataoka for interpretation of data and helpful advice. We also thank Drs. Etsuro Hatano, Kojiro Taura, Satoru Seo, and Hideaki Okajima for material support.

Supplementary material

535_2019_1555_MOESM1_ESM.TIF
Supplementary file1 (TIF 6405 kb)
535_2019_1555_MOESM2_ESM.tif (6.3 mb)
Supplementary file2 (TIF 6406 kb)
535_2019_1555_MOESM3_ESM.TIF
Supplementary file3 (TIF 512 kb)
535_2019_1555_MOESM4_ESM.TIF
Supplementary file4 (TIF 595 kb)
535_2019_1555_MOESM5_ESM.docx (18 kb)
Supplementary file5 (DOCX 19 kb)
535_2019_1555_MOESM6_ESM.xlsx (48 kb)
Supplementary file6 (XLSX 48 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefGoogle Scholar
  2. 2.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.CrossRefGoogle Scholar
  3. 3.
    Yoshida H, Shiratori Y, Kudo M, et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology. 2011;54:532–40.CrossRefGoogle Scholar
  4. 4.
    Takeda H, Takai A, Inuzuka T, et al. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis. J Gastroenterol. 2017;52:26–38.CrossRefGoogle Scholar
  5. 5.
    The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49:658–64.CrossRefGoogle Scholar
  6. 6.
    Shin S, Wangensteen KJ, Teta-Bissett M, et al. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology. 2016;64:1163–77.CrossRefGoogle Scholar
  7. 7.
    Aihara T, Noguchi S, Sasaki Y, et al. Clonal analysis of regenerative nodules in hepatitis C virus-induced liver cirrhosis. Gastroenterology. 1994;107:1805–11.CrossRefGoogle Scholar
  8. 8.
    Lin WR, Lim SN, McDonald SA, et al. The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology. 2010;51:1017–26.CrossRefGoogle Scholar
  9. 9.
    Ochiai T, Urata Y, Yamano T, et al. Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus. Hepatology. 2000;31:615–21.CrossRefGoogle Scholar
  10. 10.
    Yasui H, Hino O, Ohtake K, et al. Clonal growth of hepatitis B virus-integrated hepatocytes in cirrhotic liver nodules. Cancer Res. 1992;52:6810–4.Google Scholar
  11. 11.
    Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46:1267–73.CrossRefGoogle Scholar
  12. 12.
    Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.CrossRefGoogle Scholar
  13. 13.
    Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–11.CrossRefGoogle Scholar
  14. 14.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.CrossRefGoogle Scholar
  15. 15.
    Shimizu T, Marusawa H, Matsumoto Y, et al. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology. 2014;147:407–17.CrossRefGoogle Scholar
  16. 16.
    Ross-Innes CS, Becq J, Warren A, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47:1038–46.CrossRefGoogle Scholar
  17. 17.
    Ikeda A, Shimizu T, Matsumoto Y, et al. Leptin receptor somatic mutations are frequent in HCV-infected cirrhotic liver and associated with hepatocellular carcinoma. Gastroenterology. 2014;146:222–32.CrossRefGoogle Scholar
  18. 18.
    Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60:1983–92.CrossRefGoogle Scholar
  19. 19.
    Matsumoto T, Takai A, Eso Y, et al. Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res. 2017;77:6131–43.CrossRefGoogle Scholar
  20. 20.
    Ki Kim S, Ueda Y, Hatano E, et al. TERT promoter mutations and chromosome 8p loss are characteristic of nonalcoholic fatty liver disease-related hepatocellular carcinoma. Int J Cancer. 2016;139:2512–8.CrossRefGoogle Scholar
  21. 21.
    Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.CrossRefGoogle Scholar
  22. 22.
    Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47.CrossRefGoogle Scholar
  23. 23.
    Yoshida K, Toki T, Okuno Y, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.CrossRefGoogle Scholar
  24. 24.
    Mizuguchi A, Takai A, Shimizu T, et al. Genetic features of multicentric/multifocal intramucosal gastric carcinoma. Int J Cancer. 2018;143:1923–34.CrossRefGoogle Scholar
  25. 25.
    Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.CrossRefGoogle Scholar
  26. 26.
    Olivier M, Weninger A, Ardin M, et al. Modelling mutational landscapes of human cancers in vitro. Sci Rep. 2014;4:4482.CrossRefGoogle Scholar
  27. 27.
    Mu X, Espanol-Suner R, Mederacke I, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891–903.CrossRefGoogle Scholar
  28. 28.
    Fujimoto A, Furuta M, Totoki Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48:500–9.CrossRefGoogle Scholar
  29. 29.
    Fujimoto A, Furuta M, Shiraishi Y, et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 2015;6:6120.CrossRefGoogle Scholar
  30. 30.
    Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.CrossRefGoogle Scholar
  31. 31.
    Shibata T, Aburatani H. Exploration of liver cancer genomes. Nat Rev Gastroenterol Hepatol. 2014;11:340–9.CrossRefGoogle Scholar
  32. 32.
    Totoki Y, Tatsuno K, Yamamoto S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43:464–9.CrossRefGoogle Scholar
  33. 33.
    Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, Holt RA, Jones SJ, Lee D, Ma Y, Marra MA. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–41.CrossRefGoogle Scholar
  34. 34.
    Eso Y, Marusawa H. Novel approaches for molecular targeted therapy against hepatocellular carcinoma. Hepatol Res. 2018;48:597–607.CrossRefGoogle Scholar
  35. 35.
    Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171:1029–41.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2019

Authors and Affiliations

  • Soo Ki Kim
    • 1
    • 2
    • 3
  • Haruhiko Takeda
    • 1
    • 4
  • Atsushi Takai
    • 1
  • Tomonori Matsumoto
    • 1
  • Nobuyuki Kakiuchi
    • 1
    • 2
  • Akira Yokoyama
    • 2
  • Kenichi Yoshida
    • 2
  • Toshimi Kaido
    • 5
  • Shinji Uemoto
    • 5
  • Sachiko Minamiguchi
    • 6
  • Hironori Haga
    • 6
  • Yuichi Shiraishi
    • 7
  • Satoru Miyano
    • 7
  • Hiroshi Seno
    • 1
  • Seishi Ogawa
    • 2
  • Hiroyuki Marusawa
    • 1
    • 8
    Email author
  1. 1.Department of Gastroenterology and Hepatology, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Pathology and Tumor Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Department of Gastroenterology and HepatologyKobe Asahi HospitalKobeJapan
  4. 4.Department of Omics-Based Medicine, Center for Preventive MedicineChiba UniversityChibaJapan
  5. 5.Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
  6. 6.Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
  7. 7.Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
  8. 8.Department of Gastroenterology and HepatologyOsaka Red Cross HospitalOsakaJapan

Personalised recommendations