Advertisement

Journal of Gastroenterology

, Volume 54, Issue 1, pp 33–41 | Cite as

Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer

  • Yang Liu
  • Yoshifumi Baba
  • Takatsugu Ishimoto
  • Masaaki Iwatsuki
  • Yukiharu Hiyoshi
  • Yuji Miyamoto
  • Naoya Yoshida
  • Rong Wu
  • Hideo BabaEmail author
Review

Abstract

Microbiome research is a rapidly advancing field in human cancers. Fusobacterium nucleatum is an oral bacterium, indigenous to the human oral cavity, that plays a role in periodontal disease. Recent studies have found that F. nucleatum can promote gastrointestinal tumor progression and affect the prognosis of the disease. In addition, F. nucleatum may contribute to the chemo-resistance of gastrointestinal cancers. This review summarizes recent progress in the pathogenesis of F. nucleatum and its impact on gastrointestinal cancer.

Keywords

Fusobacterium nucleatum Microbiome Gastrointestinal cancer Colon cancer Esophageal cancer 

Notes

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Grant numbers 17H04273, 17K19702 and 17KK0195 (to Y.B.).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

References

  1. 1.
    Arthur JC, Gharaibeh RZ, Muhlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.CrossRefGoogle Scholar
  2. 2.
    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.CrossRefGoogle Scholar
  3. 3.
    Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–46.CrossRefGoogle Scholar
  4. 4.
    Al-Haddad S, El-Zimaity H, Hafezi-Bakhtiari S, et al. Infection and esophageal cancer. Ann N Y Acad Sci. 2014;1325:187–96.CrossRefGoogle Scholar
  5. 5.
    Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.CrossRefGoogle Scholar
  6. 6.
    Ley RE, Turnbaugh PJ, Klein S, et al. Human gut microbes associated with obesity. Nature. 2006;444:1022–3.CrossRefGoogle Scholar
  7. 7.
    Ohkusa T, Okayasu I, Ogihara T, et al. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.CrossRefGoogle Scholar
  8. 8.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.CrossRefGoogle Scholar
  9. 9.
    Yoneda M, Naka S, Nakano K, et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012;12:16.CrossRefGoogle Scholar
  10. 10.
    Garrett WS. Cancer and the microbiota. Science. 2015;348:80–6.CrossRefGoogle Scholar
  11. 11.
    Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22:458–78.CrossRefGoogle Scholar
  12. 12.
    Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352:535–8.CrossRefGoogle Scholar
  13. 13.
    Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15.CrossRefGoogle Scholar
  14. 14.
    Bashir A, Miskeen AY, Hazari YM, et al. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumour Biol. 2016;37:2805–10.CrossRefGoogle Scholar
  15. 15.
    Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141–7.CrossRefGoogle Scholar
  16. 16.
    Citron DM. Update on the taxonomy and clinical aspects of the genus fusobacterium. Clin Infect Dis. 2002;35:S22–7.CrossRefGoogle Scholar
  17. 17.
    Signat B, Roques C, Poulet P, et al. Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 2011;13:25–36.Google Scholar
  18. 18.
    Dzink JL, Sheenan MT, Socransky SS. Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb. nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb. nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int J Syst Bacteriol. 1990;40:74–8.CrossRefGoogle Scholar
  19. 19.
    Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.CrossRefGoogle Scholar
  20. 20.
    Kaplan CW, Lux R, Haake SK, et al. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol. 2009;71:35–47.CrossRefGoogle Scholar
  21. 21.
    Bachrach G, Ianculovici C, Naor R, et al. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol Lett. 2005;248:235–40.CrossRefGoogle Scholar
  22. 22.
    Fardini Y, Wang X, Temoin S, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol. 2011;82:1468–80.CrossRefGoogle Scholar
  23. 23.
    Han YW, Ikegami A, Rajanna C, et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 2005;187:5330–40.CrossRefGoogle Scholar
  24. 24.
    Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93.CrossRefGoogle Scholar
  25. 25.
    Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.CrossRefGoogle Scholar
  26. 26.
    Burgess DJ. Gene expression: colorectal cancer classifications. Nat Rev Cancer. 2013;13:380–1.CrossRefGoogle Scholar
  27. 27.
    Flemer B, Warren RD, Barrett MP, et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67:1454–63.CrossRefGoogle Scholar
  28. 28.
    Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.CrossRefGoogle Scholar
  29. 29.
    Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.CrossRefGoogle Scholar
  30. 30.
    Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 2016;7:e200.CrossRefGoogle Scholar
  31. 31.
    Flanagan L, Schmid J, Ebert M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–90.CrossRefGoogle Scholar
  32. 32.
    Yamaoka Y, Suehiro Y, Hashimoto S, et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol. 2018;53:517–24.CrossRefGoogle Scholar
  33. 33.
    Eklof V, Lofgren-Burstrom A, Zingmark C, et al. Cancer-associated fecal microbial markers in colorectal cancer detection. Int J Cancer. 2017;141:2528–36.CrossRefGoogle Scholar
  34. 34.
    Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 2017;66:1441–8.CrossRefGoogle Scholar
  35. 35.
    Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.CrossRefGoogle Scholar
  36. 36.
    Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137:1258–68.CrossRefGoogle Scholar
  37. 37.
    Nosho K, Sukawa Y, Adachi Y, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol. 2016;22:557–66.CrossRefGoogle Scholar
  38. 38.
    Park HE, Kim JH, Cho NY, et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 2017;471:329–36.CrossRefGoogle Scholar
  39. 39.
    Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Can Res. 2014;74:1311–8.CrossRefGoogle Scholar
  40. 40.
    Lee DW, Han SW, Kang JK, et al. Association Between Fusobacterium nucleatum, pathway mutation, and patient prognosis in colorectal cancer. Ann Surg Oncol. 2018;25(11):3389–95.CrossRefGoogle Scholar
  41. 41.
    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.CrossRefGoogle Scholar
  42. 42.
    Abed J, Emgard JE, Zamir G, et al. Fap2 Mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20:215–25.CrossRefGoogle Scholar
  43. 43.
    Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology. 2017;152:851–66.CrossRefGoogle Scholar
  44. 44.
    Chen YY, Peng Y, Yu JH, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8:31802–14.Google Scholar
  45. 45.
    Yu YN, Yu TC, Zhao HZ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6:32013–26.Google Scholar
  46. 46.
    Kumar A, Thotakura PL, Tiwary BK, et al. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiol. 2016;16:84.CrossRefGoogle Scholar
  47. 47.
    Tang B, Wang K, Jia YP, et al. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells. PLoS One. 2016;11:e0165701.CrossRefGoogle Scholar
  48. 48.
    Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.CrossRefGoogle Scholar
  49. 49.
    Saito T, Nishikawa H, Wada H, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 2016;22:679–84.CrossRefGoogle Scholar
  50. 50.
    Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T Cells in colorectal carcinoma. JAMA Oncol. 2015;1:653–61.CrossRefGoogle Scholar
  51. 51.
    Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.CrossRefGoogle Scholar
  52. 52.
    Ye X, Wang R, Bhattacharya R, et al. Fusobacterium Nucleatum subspecies Animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila). 2017;10:398–409.CrossRefGoogle Scholar
  53. 53.
    Peters BA, Wu J, Pei Z, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77:6777–87.CrossRefGoogle Scholar
  54. 54.
    Yamamura K, Baba Y, Nakagawa S, et al. Human microbiome Fusobacterium Nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016;22:5574–81.CrossRefGoogle Scholar
  55. 55.
    Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case–control study. Gut. 2018;67:120–7.CrossRefGoogle Scholar
  56. 56.
    Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6:7209–20.Google Scholar
  57. 57.
    Yamamura K, Baba Y, Miyake K, et al. Fusobacterium nucleatum in gastroenterological cancer: evaluation of measurement methods using quantitative polymerase chain reaction and a literature review. Oncol Lett. 2017;14:6373–8.Google Scholar
  58. 58.
    Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.CrossRefGoogle Scholar
  59. 59.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefGoogle Scholar
  60. 60.
    Castano-Rodriguez N, Goh KL, Fock KM, et al. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017;7:15957.CrossRefGoogle Scholar
  61. 61.
    Hsieh YY, Tung SY, Pan HY, et al. Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep. 2018;8:158.CrossRefGoogle Scholar
  62. 62.
    Wei ZL, Cao SG, Liu SL, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 2016;7:46158–72.Google Scholar
  63. 63.
    Yan X, Liu L, Li H, et al. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther. 2017;10:5031–46.CrossRefGoogle Scholar
  64. 64.
    Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(548–563):e516.Google Scholar
  65. 65.
    Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017;3:921–7.CrossRefGoogle Scholar
  66. 66.
    Pollock J, Glendinning L, Wisedchanwet T, et al. The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol. 2018;84(7). pii: e02627–17.  https://doi.org/10.1128/AEM.02627-17.
  67. 67.
    Liu L, Tabung FK, Zhang X, et al. Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 2018.  https://doi.org/10.1016/j.cgh.2018.04.030.Google Scholar
  68. 68.
    Chen T, Li Q, Zhang X, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol. 2018;79:93–101.CrossRefGoogle Scholar
  69. 69.
    Li YY, Ge QX, Cao J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.CrossRefGoogle Scholar
  70. 70.
    Wang HF, Li LF, Guo SH, et al. Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci Rep. 2016;6:33440.CrossRefGoogle Scholar
  71. 71.
    Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.CrossRefGoogle Scholar
  72. 72.
    Suehiro Y, Sakai K, Nishioka M, et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann Clin Biochem. 2017;54:86–91.CrossRefGoogle Scholar
  73. 73.
    Mira-Pascual L, Cabrera-Rubio R, Ocon S, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 2015;50:167–79.CrossRefGoogle Scholar
  74. 74.
    Amitay EL, Werner S, Vital M, et al. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis. 2017;38:781–8.CrossRefGoogle Scholar
  75. 75.
    Guo SH, Wang HF, Nian ZG, et al. Immunization with alkyl hydroperoxide reductase subunit C reduces Fusobacterium nucleatum load in the intestinal tract. Sci Rep. 2017;7:10566.CrossRefGoogle Scholar
  76. 76.
    Zanzoni A, Spinelli L, Braham S, et al. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. Microbiome. 2017;5:89.CrossRefGoogle Scholar
  77. 77.
    Dix A, Vlaic S, Guthke R, et al. Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers. Clin Microbiol Infect. 2016;22:600–6.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2018

Authors and Affiliations

  1. 1.Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Second Oncology DepartmentShengjing Hospital of China Medical UniversityShenyangChina
  3. 3.International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan

Personalised recommendations