U–Pb age and Hf isotope record of detrital zircon grains from the North Delhi Supergroup, NW India: implications for provenance and stratigraphic correlations

  • Parampreet KaurEmail author
  • Armin Zeh
  • Naveen Chaudhri
Original Paper


The depositional ages of two Proterozoic supracrustal belts, the older Aravalli Supergroup and the younger Delhi Supergroup, overlying the Aravalli Banded Gneissic Complex in NW India are still unresolved. This study presents new combined detrital zircon U–Pb and Lu–Hf isotope data of two quartzite successions from the Alwar complex of North Delhi Supergroup to constrain the depositional ages and Precambrian crustal evolution. The new results show about 90% of detrital zircon population at ca. 1850 Ma, with minor age peaks at ca. 2900, 2700, 2500 and 2200 Ma and older Eo- to Paleoarchean zircon grains at 3655 ± 20 and 3222 ± 27 Ma. The age peaks of 1850 and 2500 Ma correspond to the known magmatic events, while the detritus for others were derived from a so-far unknown crustal source(s) in the region. The data also suggest two metamorphic overprints at 1470–1420 Ma and ca. 1650 Ma, which are consistent with known events of metamorphism in the region. The zircon U–Pb ages, Hf isotopes and field relations indicate that the sedimentary protoliths of the studied quartzite were deposited at ca. 1750 Ma in a collisional setting after the emplacement of subduction-related ca. 1850 Ma granitoids, but prior to the intrusion of 1730–1700 Ma rift-related A-type granites. The regional correlations suggest that the quartzite successions are not part of the Alwar Group as currently considered, but that they apparently belong to the older Aravalli Supergroup. Largely subchondritic εHf values for most of the zircon population signify predominance of crustal reworking during Neoarchean and Paleoproterozoic. The Hf model ages of the Eoarchean zircon indicate the existence of an ancient crust at ca. 4000 Ma in the Aravalli orogen and/or its hinterland.


Detrital zircon U–Pb ages Lu–Hf isotopes North Delhi Supergroup NW India 



We express our gratitude to Adrien Vezinet and Avishai Abbo for their detailed comments, which helped to improve the clarity of the manuscript. We thank Axel Gerdes and Linda Marko (University of Frankfurt, Germany) for their technical support during sample preparation and zircon isotope analyses. We gratefully acknowledge the financial support provided by Deutscher Akademischer Austauschdienst Grant (to PK: DAAD Grant A/13/05158) and Deutsche Forschungsgemeinschaft (to AZ: DFG Grant Zeh 424/11-2) to carry out this work.

Supplementary material

531_2019_1782_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 66 kb)
531_2019_1782_MOESM2_ESM.docx (55 kb)
Supplementary material 2 (DOCX 55 kb)
531_2019_1782_MOESM3_ESM.docx (50 kb)
Supplementary material 3 (DOCX 49 kb)
531_2019_1782_MOESM4_ESM.docx (51 kb)
Supplementary material 4 (DOCX 50 kb)


  1. Anderson T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270CrossRefGoogle Scholar
  2. Baidya AS, Paul J, Pal DC, Upadhyay D (2017) Mode of occurrence and geochemistry of amphiboles in the Kolihan–Chandmari copper deposits, Rajasthan, India: insight into the ore-forming process. Ore Geol Rev 80:1092–1110CrossRefGoogle Scholar
  3. Biju–Sekhar S, Yokoyama K, Pandit MK, Okudaira T, Yoshida M, Santosh M (2003) Late paleoproterozoic magmatism in Delhi fold belt, NW India and its implication: evidence from EPMA chemical ages of zircons. J Asian Earth Sci 22:189–207CrossRefGoogle Scholar
  4. Blichert-Toft J, Puchtel PJ (2010) Depleted mantle sources through time: evidence from Lu–Hf and Sm-Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297:598–606CrossRefGoogle Scholar
  5. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57CrossRefGoogle Scholar
  6. Cawood PA, Nimchin AA, Strachan R (2007) Provenance record of Laurentian passive-margin strata in the northern Caledonides: implications for paleodrainage and paleogeography. Geol Soc Am Bull 119:993–1003CrossRefGoogle Scholar
  7. Cawood PA, Hawkesworth CJ, Dhuime B (2012) Detrital zircon record and tectonic setting. Geology 40:875–878CrossRefGoogle Scholar
  8. Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bull 125:14–32CrossRefGoogle Scholar
  9. Chattopadhyay B, Chattopadhyay S (1990) The Barodia granite—a minor intrusion in the Proterozoic Delhi Fold Belt of Rajasthan. Indian Mineral 44:25–30Google Scholar
  10. Chaudhuri T, Wan Y, Mazumder R, Ma M, Liu S (2018) Evidence of enriched, Hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci Rep 8:7069CrossRefGoogle Scholar
  11. Condie KC, Beyer E, Belousova E, Griffin WL, O’Reilly SY (2005) U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambrian Res 139:42–100CrossRefGoogle Scholar
  12. Condie KC, Belousova E, Griffin WL, Sircombe KN (2009) Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res 15:228–242CrossRefGoogle Scholar
  13. Das AR (1988) Geometry of the superposed deformation in the Delhi Supergroup rocks, North of Jaipur, Rajasthan. In: Roy AB (ed) Precambrian of the Aravalli Mountain, Rajasthan, India. Mem Geol Soc India Bangalore, no 7, pp 257–266Google Scholar
  14. Das Gupta SP (1968) The structural history of the Khetri Copper Belt, Jhunjhunu and Sikar districts, Rajasthan. Mem Geol Surv India 98:170Google Scholar
  15. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125CrossRefGoogle Scholar
  16. Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon, Rev Mineral Geochem vol 53, pp 277–303Google Scholar
  17. Fisher CM, Vervoort JD (2018) Using the magmatic record to constrain the growth of continental crust-the Eoarchean zircon Hf record of Greenland. Earth Planet Sci Lett 488:79–91CrossRefGoogle Scholar
  18. Gangopadhyay PK, Sen R (1972) Trend of regional metamorphism: an example from “Delhi System” of rocks occurring around Bairawas, north-eastern Rajasthan, India. Geol. Rundsch 61:270–281CrossRefGoogle Scholar
  19. Gehrels G (2014) Detrital zircon U–Pb geochronology applied to tectonics. Ann Rev Earth Planet Sci 42:127–149CrossRefGoogle Scholar
  20. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA–(MC) ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  21. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration – new insights from combined U–Pb and Lu–Hf in-situ LA–ICP–MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243CrossRefGoogle Scholar
  22. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archaean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Res 131:231–282CrossRefGoogle Scholar
  23. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  24. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc Lond 167:229–248CrossRefGoogle Scholar
  25. Hazarika P, Upadhyay D, Mishra B (2013) Contrasting geochronological evolution of the Rajpura-Dariba and Rampura-Agucha metamorphosed Zn–Pb deposit, Aravalli-Delhi Belt, India. J Asian Earth Sci 73:429–439CrossRefGoogle Scholar
  26. Howard KE, Hand M, Barovich KM, Reid A, Wade BP, Belousova EA (2009) Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chem Geol 262:277–292CrossRefGoogle Scholar
  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  28. Joshi KB, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M, Heilimo E, Choudhary AK (2017) The diversification of granitoids and plate tectonic implications at the Archaean-Proterozoic boundary in the Bundelkhand Craton, Central India. In: Halla J, Whitehouse M, Ahmad T, Bagai Z (eds) Archaean cratons: new insights on old rocks, vol 449. Geological Society of London, Special Publication, London, pp 123–157Google Scholar
  29. Kaur P, Chaudhri N, Raczek I, Kröner A, Hofmann AW (2009) Record of 1.82 Ga Andean-type continental arc magmatism in NE Rajasthan, India: insights from zircon and Sm–Nd ages, combined with Nd–Sr isotope geochemistry. Gondwana Res 16:56–71CrossRefGoogle Scholar
  30. Kaur P, Zeh A, Chaudhri N, Gerdes A, Okrusch M (2011a) Archaean to Palaeoproterozoic crustal evolution of the Aravalli orogen, NW India, and its hinterland: the U–Pb and Hf isotope record of detrital zircon. Precambrian Res 187:155–164CrossRefGoogle Scholar
  31. Kaur P, Chaudhri N, Raczek I, Kröner A, Hofmann AW, Okrusch M (2011b) Zircon ages of late Palaeoproterozoic (ca. 1.72–1.70 Ga) extension-related granitoids in NE Rajasthan, India: regional and tectonic significance. Gondwana Res 19:1040–1053CrossRefGoogle Scholar
  32. Kaur P, Zeh A, Chaudhri N, Gerdes A, Okrusch M (2013) Nature of magmatism and sedimentation at a Columbia active margin: insights from combined U–Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Res 23:1040–1052CrossRefGoogle Scholar
  33. Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Koepke J (2014a) Metasomatism of ferroan granites in the northern Aravalli orogen, NW India: geochemical and isotopic constraints, and its metallogenic significance. Int J Earth Sci 103:1083–1112CrossRefGoogle Scholar
  34. Kaur P, Chaudhri N, Zeh A (2014b) In situ U–Pb geochronology of the detrital zircons: implications for depositional ages of the Delhi Supergroup, northern Aravalli orogen, India. In: Abstract, Int Sem Sedimentary Processes and Metallogeny through Time (SPMT)-2014, Dharwad, pp 36–39Google Scholar
  35. Kaur P, Zeh A, Chaudhri N (2014c) Characterisation and U–Pb–Hf record of the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India. Precambrian Res 255:236–244CrossRefGoogle Scholar
  36. Kaur P, Chaudhri N, Hofmann AW (2015) New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. Int Geol Rev 57:1660–1685CrossRefGoogle Scholar
  37. Kaur P, Zeh A, Okrusch M, Chaudhri N, Gerdes A, Brätz H (2016a) Separating regional metamorphic and metasomatic assemblages and events in the northern Khetri complex, NW India: evidence from mineralogy, whole-rock geochemistry and U–Pb monazite chronology. J Asian Earth Sci 129:117–141CrossRefGoogle Scholar
  38. Kaur P, Zeh A, Chaudhri N, Eliyas N (2016b) Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon-monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrain Res 281:384–413CrossRefGoogle Scholar
  39. Kaur P, Zeh A, Chaudhri N (2017a) Palaeoproterozoic continental-arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: new constraints from in situ zircon U–Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry. J Asian Earth Sci 136:68–88CrossRefGoogle Scholar
  40. Kaur P, Zeh A, Chaudhri N, Eliyas N (2017b) Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: constraints from in situ zircon U–Pb ages and Lu–Hf isotopes. Gondwana Res 49:164–181CrossRefGoogle Scholar
  41. Kaur P, Zeh A, Chaudhri N (2019) Archean crustal evolution of the Aravalli Banded Gneissic Complex, NW India: constraints from zircon U–Pb ages, Lu–Hf isotope systematics, and whole-rock geochemistry. Precambrian Res 327:81–102CrossRefGoogle Scholar
  42. Khan I, Rai DK, Sahoo PR (2013) A note on new find of thick copper and associated precious metal mineralisation from Alwar Basin of North Delhi Fold Belt, Rajasthan. J Geol Soc India 82:495–498CrossRefGoogle Scholar
  43. Khan I, Sahoo PR, Rai DK (2014) Proterozoic felsic volcanics in Alwar Basin of North Delhi Fold Belt, Rajasthan: implication for copper mineralization. Curr Sci 106:27–28Google Scholar
  44. Knight J, Lowe J, Joy S, Cameron J, Merrillees J, Nag S, Shah N, Dua G, Jhala K (2002) The Khetri Copper Belt, Rajasthan: iron oxide copper-gold terrane in the Proterozoic of NW India. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 321–341Google Scholar
  45. Lal RK, Ackermand D (1981) Phase petrology and polyphase andalusite-sillimanite type regional metamorphism in pelitic schist of the area around Akwali, Khetri Copper Belt, Rajasthan, India. Neues Jahrb Mineral Abhandl 141:161–185Google Scholar
  46. Li XC, Zhou MF, Williams-Jones AE, Yang YH, Gao JF (2019) Timing and genesis of CU–(Au) mineralization in the Khetri Copper Belt, northwestern India: constraints from in situ U–Pb ages and Sm–Nd isotopes of monazite-(Ce). Mineral Dep 54:553–569CrossRefGoogle Scholar
  47. McKenzie NR, Hughes NC, Myrow PM, Banerjee DM, Deb M, Planavsky NJ (2013) New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications. Precambrian Res 238:120–128CrossRefGoogle Scholar
  48. Miller SR, Mueller PA, Meert JG, Kamenov GD, Pivarunas AF, Sinha AK, Pandit MK (2018) Detrital zircons reveal evidence of Hadean crust in the Singhbhum Craton, India. J Geol 126:541–552CrossRefGoogle Scholar
  49. Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266CrossRefGoogle Scholar
  50. Mondal MEA, Goswami JN, Deomurari MP, Sharma KK (2002) Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Res 117:85–100CrossRefGoogle Scholar
  51. Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS, Vroon PZ (2008) Hafnium isotope characterisation of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255:231–235CrossRefGoogle Scholar
  52. Naha K, Mukhopadhyay DK, Mohanty R (1988) Structural evolution of the rocks of the Delhi Group around Khetri, northeastern Rajasthan. In: Roy AB (ed) Precambrian of the Aravalli Mountain, Rajasthan, India. Mem Geol Soc India Bangalore, no 7, pp 207–245Google Scholar
  53. Pandey M, Pant NC, Kumar S (2013) Criteria to distinguish between regional and contact zone monazite—a case study from Proterozoic North Delhi Fold Belt (NDFB), India. Episodes 36:275–289CrossRefGoogle Scholar
  54. Rajesh HM, Mukhppadhyay D, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence of an early Archaean granite from Bastar craton, India. J Geol Soc Lond 166:193–196CrossRefGoogle Scholar
  55. Roy AB (1988) Stratigraphic and tectonic framework of the Aravalli Mountain range. In: Roy AB (ed) Precambrian of the Aravalli Mountain, Rajasthan, India. Mem Geol Soc India Banbalore, no 7, pp 3–31Google Scholar
  56. Roy AB, Purohit R (2018) Indian Shield: Precambrian evolution and Phanerozoic reconstruction. Elsevier, p 386Google Scholar
  57. Safonova I, Maruyama S, Hirata T, Kon Y, Rino S (2010) LA ICP MS U–Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation. J Geodyn 50:134–153CrossRefGoogle Scholar
  58. Sarkar SC, Dasgupta S (1980) Geologic setting, genesis and transformation of the sulfide deposits in the northern part of the Khetri copper belt, Rajasthan, India—an outline. Mineral Dep 15:117–137CrossRefGoogle Scholar
  59. Singh SP (1988a) Stratigraphy and sedimentation pattern in the Proterozoic Delhi Supergroup, northwestern India. In: Roy AB (ed) Precambrian of the Aravalli Mountain, Rajasthan, India. Mem Geol Soc India Bangalore, no 7, pp 193–205Google Scholar
  60. Singh SP (1988b) Sedimentation patterns of the Proterozoic Delhi Supergroup, northeastern Rajasthan, India, and their tectonic implications. Sed Geol 58:79–94CrossRefGoogle Scholar
  61. Sircombe KN (2004) Age Display: an EXCEL workbook to evaluate and display univariant geochronological data frequency histograms and probability density distributions. Comp Geosci 30:21–31CrossRefGoogle Scholar
  62. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood SA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotope microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  63. Sreenivas B, Dey S, Bhaskar Rao YJ, Vijaya Kumar T, Babu EVSSK, Williams IS (2019) A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics. Geosci Front 10:1359–1370CrossRefGoogle Scholar
  64. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  65. Stern RA, Bodorkos S, Kamo SL, Hickman AH, Corfu F (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand Geoanal Res 33:145–168CrossRefGoogle Scholar
  66. Vezinet A, Pearson DG, Thomassot E, Stern RA, Sarkar C, Luo Y, Fisher CM (2018) Hydrothermally-altered mafic crust as source of early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglik Block, N. Labrador. Earth Planet Sci Lett 503:95–107CrossRefGoogle Scholar
  67. Wang W, Cawood PA, Pandit MK, Zhou MF, Chen WT (2017) Zircon U–Pb age and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India. J Geol Soc Lond 174:759–772CrossRefGoogle Scholar
  68. Wang W, Cawood PA, Pandit MK, Zhou MF, Zhao JH (2019) Evolving passive- and active-margin tectonics of the Paleoproterozoic Aravalli Basin, NW India. Geol Soc Am Bull 131:426–433CrossRefGoogle Scholar
  69. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  70. Wiedenbeck M, Goswami JN, Roy AB (1996) Stabilisation of the Aravalli craton of the north-western India at 2.5 Ga: an ion-microprobe zircon study. Chem Geol 129:325–340CrossRefGoogle Scholar
  71. Wilson AH, Zeh A (2018) U–Pb and Hf isotopes of detrital zircons from the Pongola Supergroup: constraints on deposition ages, provenance and Archaean evolution of the Kaapvaal Craton. Precambrian Res 305:177–196CrossRefGoogle Scholar
  72. Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195CrossRefGoogle Scholar
  73. Zeh A, Gerdes A (2010) Baltica-and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17:254–263CrossRefGoogle Scholar
  74. Zeh A, Gerdes A (2012) U–Pb and Hf isotope record of detrital zircons from gold bearing sediments of the Pietersburg Greenstone Belt (South Africa)—is there a common provenance with the Witwatersrand Basin? Precambrian Res 204–205:46–56CrossRefGoogle Scholar
  75. Zeh A, Gerdes A, Millonig L (2011) Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust-mantle formation and crust reworking between 3.66 and 2.73. J Geol Soc Lond 168:953–963CrossRefGoogle Scholar
  76. Zeh A, Gerdes A, Heubeck C (2013) U–Pb and Hf isotope data of detrital zircons from the Barberton Greenstone Belt: constraints on provenance and Archaean crustal evolution. J Geol Soc Lond 170:215–223CrossRefGoogle Scholar
  77. Zeh A, Wilson AH, Ovtcharova M (2016) Source and age of upper Transvaal Supergroup, South Africa: age-Hf isotope record of zircon in Magaliesberg quartzite and Dullstroom lava, and implications for Paleoproterozoic (2.5–2.0 Ga) continent reconstruction. Precambrian Res 278:1–21CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Centre of Advanced Study in GeologyPanjab UniversityChandigarhIndia
  2. 2.Institut für Geowissenschafte, Facheinheit MineralogieJ.W. Goethe UniversitätFrankfurtGermany
  3. 3.Institut für Angewandte Geowissenschaften, Mineralogie und PetrologieKIT-Karlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations