Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 8, pp 2627–2651 | Cite as

Three-dimensional geological modeling supports a revised Burdigalian chronostratigraphy in the North Alpine Foreland Basin

  • Felix Hofmayer
  • Uwe Kirscher
  • Karin Sant
  • Wout Krijgsman
  • Thomas Fritzer
  • Dietmar Jung
  • Vinzenz Weissbrodt
  • Bettina ReichenbacherEmail author
Original Paper
  • 96 Downloads

Abstract

Precise age data are a basic prerequisite for the correlation of a sedimentary succession with the Global Time Scale, which in turn allows one to place its biotic and other data in a global context. In the North Alpine Foreland Basin (NAFB), a patchy distribution of outcrops and uncertainties in the correlation of strata have led to conflicting age models, in particular for deposits of lower Miocene (Burdigalian) age. Here, we present a new three-dimensional geological model of the SE German sector of the NAFB, covering an area of 13,200 km2, which helps to resolve the discrepancies. The dataset comprises lithostratigraphic information from 150 boreholes, supplemented by magnetostratigraphic data from six outcrops. Computer-based 3D modeling was conducted with the open source software QGIS for a 500-m-thick succession comprising units of the Upper Marine Molasse, the brackish Oncophora Fm and the Upper Freshwater Molasse. The results provide new insights pertaining to (1) the isochrony of strata, (2) subsidence, and (3) synsedimentary tectonics. The new data permit us to reliably place the outcrops within the regional lithostratigraphic scheme, thus enabling a new correlation of their magnetic polarities with the Global Time Scale. On this basis, we propose a revised age model for the middle and upper Burdigalian strata in the eastern part of the NAFB, which is supported by previously reported 87Sr/86Sr age data. The model indicates that the succession is substantially—up to 0.8 Ma—younger than earlier publications have suggested. Furthermore, it implies that the two synsedimentary tectonic events discerned may both be related to the large-scale tectonic movements that affected the NAFB during the late Burdigalian.

Keywords

S-German Molasse Basin Ottnangian–Karpatian 3D model Stratigraphy Tectonics Sr-isotope ages 

Notes

Acknowledgements

For providing access to drilling sites and well samples, we are grateful to the engineering companies Müller and Hereth GmbH (Simbach, Germany), with special thanks to Michael Schmid and Dr. Marcus Scholz, and to Piewak and Partner GmbH (Füssing, Germany), with special thanks to Manfred Piewak. We thank Dr. Martina Pippèrr (LMU Munich, Germany), Dr. Alexander Rocholl (GFZ Potsdam, Germany) and Prof. Dr. Valerian Bachtadse (LMU Munich) for precious comments and discussion. For discussions on 3D modeling and stratigraphic issues, we thank Dr. Robert Pamer (LfU, Augsburg, Germany), Dr. Kai Zosseder (TU Munich, Germany), Ulrich Haas and Martin Herz (both LfU, Hof, Germany). We are grateful to Johannes Großmann (LfU, Augsburg, Germany) for providing new results on the Wolfach Fault. We are indebted to Marija Ivanovic (LfU, Augsburg, Germany) for her invaluable assistance with sample processing and microfossil picking of the Füssing -TH 1 samples. For help in identifying fossils, we thank Inda Brinkmann (Lund University, Sweden), Dr. Werner Schwarzhans (Hamburg, Germany) and Dr. Mathias Harzhauser (Natural History Museum, Vienna, Austria). The manuscript benefited greatly from the constructive comments of the reviewers Prof. Dr. P. Grunert (Univ. Köln, Germany) and Dr. Ch. Rupp (GBA Wien, Austria), and from the critical reading of Dr. P. Hardy (Düsseldorf, Germany). Finally, we acknowledge the students and lecturers involved in the Master’s program in Geobiology and Paleobiology at LMU, who provided a stimulating environment for this work.

Supplementary material

531_2019_1780_MOESM1_ESM.xlsx (24 kb)
Supplementary material 1 (XLSX 24 kb)

References

  1. Abdul-Aziz H, Böhme M, Rocholl A, Prieto J, Wijbrans JR, Bachtadse V, Ulbig A (2010) Integrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater Molasse in western Bavaria (Germany). Int J Earth Sci 99:1859–1886CrossRefGoogle Scholar
  2. Allen PA, Mange-Rajetzky M, Matter A, Homewood P (1985) Dynamic paleogeography of the open Burdigalian seaway, Swiss Molasse basin. Eclogae Geol Helv 78:351–386Google Scholar
  3. Bachmann GH, Müller M (1992) Sedimentary and structural evolution of the German Molasse Basin. Eclogae Geol Helv 85:519–530Google Scholar
  4. Berger J-P et al (2005) Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int J Earth Sci 94:711–731.  https://doi.org/10.1007/s00531-005-0479-y CrossRefGoogle Scholar
  5. Binder H (2004) Terrestrial, freshwater and brachyhaline Gastropoda from the Lower Miocene deposits of Oberdorf (Styria, Austria). Annalen des Naturhistorischen Museums in Wien Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie 105 A:189–229Google Scholar
  6. Böhme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401.  https://doi.org/10.1016/s0031-0182(03)00367-5 CrossRefGoogle Scholar
  7. Brinkmann I, Pippèrr M, Reichenbacher B (2019) A new well-preserved ostracod fauna from the middle Burdigalian (lower Miocene) of the North Alpine Foreland Basin. Geobios.  https://doi.org/10.1016/j.geobios.2019.07.005 CrossRefGoogle Scholar
  8. Cicha I, Rögl F, Rupp C, Ctyroka J (1998) Oligocene-Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 549:1–325Google Scholar
  9. Čtyroký P, Kantorová V, Ondrejíčková A, Strauch F, Vass D (1973) Faziostratotypen der Rzehakia (Oncophora) Formation. In: Papp A, Rögl F, Seneš J (eds) Chronostratigraphie und Neostratotypen Miozän der zentralen Paratethys, vol III. M2 Ottnangien Die Innviertler, Salgótarjáner. Bántapusztaer Schichtengruppe und die Rzehakia Formation. Slowakische Akademie der Wissenschaften, Bratislava, pp 244–265Google Scholar
  10. Diepolder GW et al (2011) Geowissenschaftliche Landesaufnahme in der Planungsregion 12 Donau-Wald. Bayerisches Landesamt für Umwelt, AugsburgGoogle Scholar
  11. Doppler G, Heissig K, Reichenbacher B (2005) Die Gliederung des Tertiärs im süddeutschen Molassebecken. Newsl Stratigr 41:359–375.  https://doi.org/10.1127/0078-0421/2005/0041-0359 CrossRefGoogle Scholar
  12. Frieling D, Aehnelt M, Scholz H, Reichenbacher B (2009) Sequence stratigraphy of an alluvial fan-delta in the Upper Marine Molasse (Pfänder area, Late Burdigalian, Miocene). Z Dtsch Ges Geowiss 160:333–357.  https://doi.org/10.1127/1860-1804/2009/0160-0333 CrossRefGoogle Scholar
  13. Garefalakis P, Schlunegger F (2019) Deciphering tectonic, eustatic and surface controls on the 20 Ma-old Burdigalian transgression recorded in the Upper Marine Molasse in Switzerland. Solid Earth Discuss.  https://doi.org/10.5194/se-2019-27(in review)
  14. Goldbrunner JE, Vasvári V, Kolb A (2001) Die Bohrung Simbach-Braunau Thermal 1 Technischer Ablauf und hydrogeologische Ergebnisse. Geol Bavarica 106:59–79Google Scholar
  15. Grimm WD (1963) Der Schillhorizont in der ostniederbayerischen Süßbrackwassermolasse und seine bergbauliche Gewinnung. Geol Mitt 3:221–252Google Scholar
  16. Grunert P, Soliman A, Harzhauser M, Müllegger S, Piller WE, Roetzel R, Rögl F (2010) Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol Carpath 61:129–145.  https://doi.org/10.2478/v10096-010-0006-3 CrossRefGoogle Scholar
  17. Grunert P, Soliman A, Ćorić S, Scholger R, Harzhauser M, Piller WE (2011) Stratigraphic re-evaluation of the stratotype for the regional Ottnangian stage (Central Paratethys, middle Burdigalian). Newsl Stratigr 44:1–16.  https://doi.org/10.1127/0078-0421/2010/0001 CrossRefGoogle Scholar
  18. Grunert P, Soliman A, Ćorić S, Roetzel R, Harzhauser M, Piller WE (2012) Facies development along the tide-influenced shelf of the Burdigalian Seaway: an example from the Ottnangian stratotype (Early Miocene, middle Burdigalian). Mar Micropaleontol 84–85:14–36.  https://doi.org/10.1016/j.marmicro.2011.11.004 CrossRefGoogle Scholar
  19. Grunert P, Tzanova A, Harzhauser M, Piller WE (2014) Mid-Burdigalian Paratethyan alkenone record reveals link between orbital forcing, Antarctic ice-sheet dynamics and European climate at the verge to Miocene Climate Optimum. Global Planet Change 123:36–43.  https://doi.org/10.1016/j.gloplacha.2014.10.011 CrossRefGoogle Scholar
  20. Grunert P, Auer G, Harzhauser M, Piller WE (2015) Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsl Stratigr 48:111–133.  https://doi.org/10.1127/nos/2014/0056 CrossRefGoogle Scholar
  21. Gusterhuber J, Dunkl I, Hinsch R, Linzer H-G, Sachsenhofer R (2012) Neogene uplift and erosion in the Alpine foreland basin (upper Austria and Salzburg). Geol Carpath 63:295–305CrossRefGoogle Scholar
  22. Haas J (1987) Das Ortenburger Schotter-Delta in der Süßbrackwassermolasse von Ostniederbayern - geologische, sedimentpetrographische und terrestrisch-photogrammetrische Untersuchungen. Dissertation, Ludwig-Maximilians-UniversitätGoogle Scholar
  23. Hagn H (1953) Paläontologische Untersuchungen am Bohrgut der Bohrungen Ortenburg CF 1001, 1002 und 1003 in Niederbayern. Zeitschrift der Deutschen Geologischen Gesellschaft 105:324–358Google Scholar
  24. Hagn H, Malz H, Martini E, Weiss W, Witt W (1981) Exkursion G: Miozäne Vorland-Molasse Niederbayerns und Kreide von Regensburg. Geol Bavarica 82:272–278Google Scholar
  25. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Paleogeogr Paleoclimatol Paleoecol 253:8–31.  https://doi.org/10.1016/j.palaeo.2007.03.031 CrossRefGoogle Scholar
  26. Heckeberg N, Pippèrr M, Lauchli B, Heimann FUM, Reichenbacher B (2010) The Upper Marine Molasse (Burdigalian, Ottnangian) in Southwest Germany—facies interpretation and a new lithostratigraphic terminology. Z Dtsch Ges Geowiss 161:285–302.  https://doi.org/10.1127/1860-1804/2010/0161-0285 CrossRefGoogle Scholar
  27. Hilgen F, Lourens LJ, Van Dam JA (2012) The Neogene Period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Time Scale 2012, vol 1. Elsevier, Amsterdam, pp 923–978CrossRefGoogle Scholar
  28. Hofmann GW (1967) Untersuchungen an der Gattung Bolivina (Foraminifera) im Oligozan und Miozän der ostbayerischen Molasse. Geol Bavarica 57:121–204Google Scholar
  29. Howarth RJ, McArthur JM (2003) SIS Look-up table, Version 4: 08/03. Received by personal communicationGoogle Scholar
  30. Janssen R et al (2018) Das Tertiär in der Stratigraphischen Tabelle von Deutschland 2016. Z Dtsch Ges Geowiss 169:267–294.  https://doi.org/10.1127/zdgg/2018/0152 CrossRefGoogle Scholar
  31. Janz H, Vennemann TW (2005) Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 225:216–247.  https://doi.org/10.1016/j.palaeo.2005.06.012 CrossRefGoogle Scholar
  32. Jost J, Kälin D, Schulz-Mirbach T, Reichenbacher B (2006) Late Early Miocene lake deposits near Mauensee, central Switzerland: fish fauna (otoliths, teeth), accompanying biota and palaeoecology. Eclogae Geol Helv 99:309–326.  https://doi.org/10.1007/s00015-006-1198-5 CrossRefGoogle Scholar
  33. Kälin D, Kempf O (2009) High-resolution stratigraphy from the continental record of the Middle Miocene Northern Alpine Foreland Basin of Switzerland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 254:177–235.  https://doi.org/10.1127/0077-7749/2009/0010 CrossRefGoogle Scholar
  34. Kempf O, Pross J (2005) The lower marine to lower freshwater Molasse transition in the northern Alpine foreland basin (Oligocene; central Switzerland–south Germany): age and geodynamic implications. Int J Earth Sci 94:160–171.  https://doi.org/10.1007/s00531-004-0437-0 CrossRefGoogle Scholar
  35. Kempf O, Matter A, Burbank DW, Mange M (1999) Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework: the eastern Swiss Molasse Basin. Int J Earth Sci 88:253–275.  https://doi.org/10.1007/s005310050263 CrossRefGoogle Scholar
  36. Kirscher U, Prieto J, Bachtadse V, Abdul Aziz H, Doppler G, Hagmaier M, Böhme M (2016) A biochronologic tie-point for the base of the Tortonian stage in European terrestrial settings: magnetostratigraphy of the topmost Upper Freshwater Molasse sediments of the North Alpine Foreland Basin in Bavaria (Germany). Newsl Stratigr 49:445–467.  https://doi.org/10.1127/nos/2016/0288 CrossRefGoogle Scholar
  37. Kirschvink JL (1980) The least-squares line and plane and the analysis of Paleomagnetic data. Geophys J R Astron Soc 62:699–718.  https://doi.org/10.1111/j.1365-246X.1980.tb02601.x CrossRefGoogle Scholar
  38. Knipscheer HCG (1952) Die Gliederung der ungefalteten Molasse im östlichen Teil Bayerns auf Grund mikropaläontologischer Untersuchungen. Geol Bavarica 14:48–67Google Scholar
  39. Kováč M, Barath I, Harzhauser M, Hlavaty I, Hudackova N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Courier Forschungsinstitut Senckenberg 246:187–212Google Scholar
  40. Kowalke T, Reichenbacher B (2005) Early Miocene (Ottnangian) Mollusca of the Western Paratethys—ontogenetic strategies and palaeo-environments. Geobios 38:609–635CrossRefGoogle Scholar
  41. Koymans MR, Langereis CG, Pastor-Galán D, van Hinsbergen DJ (2016) Paleomagnetism.org: an online multi-platform open source environment for paleomagnetic data analysis. Comput Geosci 93:127–137.  https://doi.org/10.1016/j.cageo.2016.05.007 CrossRefGoogle Scholar
  42. Krijgsman W, Piller W (2012) Central and Eastern Paratethys. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Time Scale 2012, vol 1. Elsevier, Amsterdam, pp 935–937Google Scholar
  43. Kuhlemann J, Kempf O (2002) Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment Geol 152:45–78.  https://doi.org/10.1016/s0037-0738(01)00285-8 CrossRefGoogle Scholar
  44. Lemcke K (1973) Zur nachpermischen Geschichte des nördlichen Alpenvorlandes. Geol Bavarica 69:5–48Google Scholar
  45. Lemcke K (1988) Geologie von Bayern I: Das bayerische Alpenvorland vor der Eiszeit—Erdgeschichte, Bau. Bodenschätze. Schweizerbart, StuttgartGoogle Scholar
  46. Martini E (1981) Nannoplankton in der Ober-Kreide, im Alttertiär und im tieferen Jungtertiär von Süddeutschland und dem angrenzenden Österreich. Geol Bavarica 82:345–356Google Scholar
  47. Mayr M (1957) Geologische Untersuchungen in der ungefalteten Molasse im Bereich des unteren Inn: positionsblätter Simbach a. Inn 653 und Julbach 652 Ostteil. Beihefte des Geologischen Jahrbuches 26:309–370Google Scholar
  48. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Time Scale. Elsevier, Amsterdam, pp 127–144CrossRefGoogle Scholar
  49. McFadden P, McElhinny M (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet Sci Lett 87:161–172CrossRefGoogle Scholar
  50. Mullender TAT, Frederichs T, Hilgenfeldt C, de Groot LV, Fabian K, Dekkers MJ (2016) Automated paleomagnetic and rock magnetic data acquisition with an in-line horizontal “2G” system. Geochem Geophys Geosyst 17:3546–3559CrossRefGoogle Scholar
  51. Oertli HJ (1956) Ostrakoden aus der oligozänen und miozänen Molasse der Schweiz. Dissertation, University BernGoogle Scholar
  52. Olsson RK, Hemleben C, Coxall HK, Wade BS (2018) Taxonomy, biostratigraphy, and phylogeny of Oligocene Ciperoella n. gen. In: Wade B, K. Olsson R, Pearson P, Huber B, Berggren W (eds) Atlas of Oligocene Planktonic Foraminifera, vol 46. Cushman Foundation for Foraminiferal Research, Lawrence, pp 215–230Google Scholar
  53. Ortner H, Aichholzer S, Zerlauth M, Pilser R, Fügenschuh B (2015) Geometry, amount, and sequence of thrusting in the Subalpine Molasse of western Austria and southern Germany, European Alps. Tectonics 34:1–30.  https://doi.org/10.1002/2014tc003550 CrossRefGoogle Scholar
  54. Palzer-Khomenko M, Wagreich M, Knierzinger W, Meszar M, Gier S, Kallanxhi M-E, Soliman A (2018) A calcite crisis unravelling Early Miocene (Ottnangian) stratigraphy in the North Alpine-Carpathian Foreland Basin: a litho-and chemostratigraphic marker for the Rzehakia Lake System. Geol Carpath 69:315–334CrossRefGoogle Scholar
  55. Pearson PN, Wade BS, Huber BT (2018) Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerinitidae (Dipsidripella, Globigerinita, and Tenuitella). In: Wade B, K. Olsson R, Pearson P, Huber B, Berggren W (eds) Atlas of Oligocene Planktonic Foraminifera, vol 46. Cushman Foundation for Foraminiferal Research, Lawrence, pp 429–458Google Scholar
  56. Pfleiderer S et al (2016) GeoMol – Geologische 3D-Modellierung des österreichischen Molassebeckens und Anwendungen in der Hydrogeologie und Geothermie im Grenzgebiet von Oberösterreich und Bayern. Abhandlungen der Geologischen Bundesanstalt 70:3–88Google Scholar
  57. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  58. Pippèrr M (2011) Characterisation of Ottnangian (middle Burdigalian) palaeoenvironments in the North Alpine Foreland Basin using benthic foraminifera—a review of the Upper Marine Molasse of southern Germany. Mar Micropaleontol 79:80–99.  https://doi.org/10.1016/j.marmicro.2011.02.002 CrossRefGoogle Scholar
  59. Pippèrr M, Reichenbacher B (2009) Biostratigraphy and paleoecology of benthic foraminifera from the Eggenburgian “Ortenburger Meeressande” of southeastern Germany (Early Miocene, Paratethys). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 254:41–61.  https://doi.org/10.1127/0077-7749/2009/0003 CrossRefGoogle Scholar
  60. Pippèrr M, Reichenbacher B (2010) Foraminifera from the borehole Altdorf (SE Germany): proxies for Ottnangian (early Miocene) palaeoenvironments of the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 289:62–80.  https://doi.org/10.1016/j.palaeo.2010.02.009 CrossRefGoogle Scholar
  61. Pippèrr M, Reichenbacher B (2017) Late Early Miocene palaeoenvironmental changes in the North Alpine Foreland Basin. Palaeogeogr Palaeoclimatol Palaeoecol 468:485–502.  https://doi.org/10.1016/j.palaeo.2017.01.002 CrossRefGoogle Scholar
  62. Pippèrr M, Reichenbacher B, Witt W, Rocholl A (2007) The middle and Upper Ottnangian of the Simssee area (SE Germany): micropalaeontology, biostratigraphy and chronostratigraphy. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 245:353–378.  https://doi.org/10.1127/0077-7749/2007/0245-0353 CrossRefGoogle Scholar
  63. Pippèrr M, Reichenbacher B, Doppler G, Hagmaier M, Jung D (2016) The northern coast of the Ottnangian (middle Burdigalian, early Miocene) Molasse Sea in Germany: sediments, foraminiferal assemblages and biostratigraphy. Int J Earth Sci 105:1055–1085.  https://doi.org/10.1007/s00531-015-1224-9 CrossRefGoogle Scholar
  64. Pippèrr M, Reichenbacher B, Kirscher U, Sant K, Hanebeck H (2018) The middle Burdigalian in the North Alpine Foreland Basin (Bavaria, SE Germany)—a lithostratigraphic, biostratigraphic and magnetostratigraphic re-evaluation. Newsl Stratigr 51:285–309.  https://doi.org/10.1127/nos/2017/0403 CrossRefGoogle Scholar
  65. Prieto J, Böhme M, Maurer H, Heissig K, Abdul Aziz H (2009) Sedimentology, biostratigraphy and environments of the Untere Fluviatile Serie (Lower and Middle Miocene) in the central part of the North Alpine Foreland Basin—implications for basin evolution. Int J Earth Sci 98:1767–1791CrossRefGoogle Scholar
  66. Reichenbacher B (1993) Mikrofaunen, Paläogeographie und Biostratigraphie der miozänen Brack- und Süßwassermolasse in der westlichen Paratethys unter besonderer Berücksichtigung der Fisch-Otolithen. Senckenb Lethaea 73:277–374Google Scholar
  67. Reichenbacher B et al (2013) A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss J Geosci 106:309–334.  https://doi.org/10.1007/s00015-013-0142-8 CrossRefGoogle Scholar
  68. Rocholl A, Schaltegger U, Gilg HA, Wijbrans J, Böhme M (2018) The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. Int J Earth Sci 107:387–407CrossRefGoogle Scholar
  69. Roetzel R, Ćorić S, Galović I, Rögl F (2006) Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Parisdorf, Lower Austria, Central Paratethys). Beiträge zur Paläontologie (Wien) 30:387–413Google Scholar
  70. Roetzel R et al (2014) Lower Miocene (upper Burdigalian, Karpatian) volcanic ash-fall at the south-eastern margin of the Bohemian Massif in Austria—new evidence from 40Ar/39Ar-dating, palaeomagnetic, geochemical and mineralogical investigations. Austrian J Earth Sci 107:2–22Google Scholar
  71. Rögl F (1994) Globigerina ciperoensis (Foraminiferida) in the Oligocene and Miocene of the Central Paratethys. Annalen des Naturhistorischen Museums in Wien Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, pp 133–159Google Scholar
  72. Rupp C, Haunold-Jenke Y (2003) Untermiozäne Foraminiferenfaunen aus dem oberösterreichischen Zentralraum. Jb Geol B-A 143:227–302Google Scholar
  73. Rupp C et al (2008) Geologische Karte der Republik Österreich 1:50.000, Blatt 47 Ried im Innkreis. Erläuterungen zu Blatt 47 Ried im Innkreis. Geological Survey of Austria, ViennaGoogle Scholar
  74. Sant K, Kirscher U, Reichenbacher B, Pippèrr M, Jung D, Doppler G, Krijgsman W (2017) Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints. Global Planet Change 152:38–50.  https://doi.org/10.1016/j.gloplacha.2017.02.002 CrossRefGoogle Scholar
  75. Schlickum WR (1964) Die Molluskenfauna der Süßbrackwassermolasse Niederbayerns. Archiv für Molluskenkunde 93:1–70Google Scholar
  76. Schlickum WR (1971) Die beiden miozänen Brackwasserbecken der süddeutschen Molasse und ihre Molluskenfauna. Senckenb Lethaea 52:569–581Google Scholar
  77. Schlickum WR, Strauch F (1968) Der Aussüßungs- und Verlandungsprozeß im Bereich der Brackwassermolasse Niederbayerns. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 8:327–391Google Scholar
  78. Schlunegger F, Matter A, Burbank DW, Klaper EM (1997) Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events. Geol Soc Am Bull 109:225–241.  https://doi.org/10.1130/0016-7606(1997)109%3c0225:mcorbe%3e2.3.co;2 CrossRefGoogle Scholar
  79. Schlunegger F, Melzer J, Tucker GE (2001) Climate, exposed source-rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. Int J Earth Sci 90:484–499CrossRefGoogle Scholar
  80. Schneider S (2008) The bivalve fauna from the Ortenburg Marine Sands in the well-core “Straß” (Early Miocene; SE Germany)—taxonomy, stratigraphy, paleoecology, and paleogeography. Paläontol Z 82:402–417CrossRefGoogle Scholar
  81. Schneider S, Pippèrr M, Frieling D, Reichenbacher B (2011) Sedimentary facies and paleontology of the Ottnangian Upper Marine Molasse and Upper Brackish Water Molasse of eastern Bavaria: A field trip guide. In: GSA FIELD GUIDE. Geological Field Trips in Central Western Europe, vol 22. The Geological Society of America, pp 35–50.  https://doi.org/10.1130/2011.0022(04)
  82. Sissingh W (2006) Kinematic sequence stratigraphy of the European Cenozoic Rift System and Alpine Foreland Basin: correlation with Mediterranean and Atlantic plate-boundary events. Netherl J Geosci/Geologie en Mijnbouw 85:77–129CrossRefGoogle Scholar
  83. Spezzaferri S, Coxall HK, Olsson RK, Hemleben C (2018) Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella n. gen. In: Wade B, K. Olsson R, Pearson P, Huber B, Berggren W (eds) Atlas of Oligocene Planktonic Foraminifera, vol 46. Cushman Foundation for Foraminiferal Research, Lawrence, pp 179–215Google Scholar
  84. ter Borgh M, Stoica M, Donselaar ME, Matenco L, Krijgsman W (2014) Miocene connectivity between the Central and Eastern Paratethys: constraints from the western Dacian Basin. Palaeogeogr Palaeoclimatol Palaeoecol 412:45–67.  https://doi.org/10.1016/j.palaeo.2014.07.016 CrossRefGoogle Scholar
  85. Teschner C, Reichenbacher B (2017) Otolith-based age determination of mid-Burdigalian marine sediments in the North Alpine Foreland Basin. Bull Geosci 92:143–152.  https://doi.org/10.3140/bull.geosci.1659 CrossRefGoogle Scholar
  86. Tipper JC, Sach VJ, Heizmann EPJ (2003) Loading fractures and Liesegang laminae: new sedimentary structures found in the north-western North Alpine Foreland Basin (Oligocene-Miocene, south-west Germany). Sedimentology 50:791–813.  https://doi.org/10.1046/j.1365-3091.2003.00578.x CrossRefGoogle Scholar
  87. Unger HJ (1982) Die Forschungsbohrungen Osterhofen GLA 1—5, die Stratigraphie des tieferen Untergrundes und die Lagerung des Ortenburger Schotters. Verh Geol B-A 3:285–311Google Scholar
  88. Unger HJ (1984) Geologische Karte von Bayern 1:50000—Erläuterungen zum Blatt Nr. L 7544 Griesbach im Rottal. Geologisches Landesamt für Umwelt, MunichGoogle Scholar
  89. Unger HJ, Schwarzmeier J (1982) Die Tektonik im tieferen Untergrund Ostniederbayerns. Jahresbericht Oberösterreichischer Musealverein—Gesellschaft für Landeskunde 127:197–220Google Scholar
  90. Van der Boon A et al (2018) The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway. Global Planet Change 162:101–119.  https://doi.org/10.1016/j.gloplacha.2017.12.009 CrossRefGoogle Scholar
  91. von Hartmann H, Tanner DC, Schumacher S (2016) Initiation and development of normal faults within the German alpine foreland basin: the inconspicuous role of basement structures. Tectonics 35:1560–1574CrossRefGoogle Scholar
  92. Wagner LR (1998) Tectono-stratigraphy and hydrocarbons in the Molasse Foredeep of Salzburg, Upper and Lower Austria. Geol Soc Lond Spec Publ 134:339–369.  https://doi.org/10.1144/GSL.SP.1998.134.01.16 CrossRefGoogle Scholar
  93. Wenger WF (1987) Die Foraminiferen des Miozäns der bayerischen Molasse und ihre stratigraphische sowie paläogeographische Auswertung. Zitteliana 16:173–340Google Scholar
  94. Wenger WF (1993) Biostratigraphische Untersuchungen in der Oberen Meeresmolasse bei Bad Füssing (Niederbayern)—Ein Beispiel für die praktische Anwendung mikropaläontologischer Untersuchungsmethoden bei der Standortoptimierung von Grundwassererschließungen. Zitteliana 20:411–417Google Scholar
  95. Witt W (2000) Süßwasserostracoden der miozänen Vorlandmolasse Süddeutschlands. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 40:109–151Google Scholar
  96. Witt W (2009) Zur Ostracodenfauna des Ottnangs (Unteres Miozän) der Oberen Meeresmolasse Bayerns. Zitteliana 48(49):49–67Google Scholar
  97. Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW (ed) Methods in Palaeo-magnetism. Elsevier, Amsterdam, pp 254–286Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Department of Earth- and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Geological Survey of AustriaViennaAustria
  3. 3.Department of GeosciencesEberhard Karls University TübingenTübingenGermany
  4. 4.Paleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Bayerisches Landesamt für Umwelt, Dienststelle AugsburgAugsburgGermany
  6. 6.Bayerisches Landesamt für Umwelt, Dienststelle HofHof/SaaleGermany
  7. 7.Department of Earth and Environmental Sciences, GeophysicsLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations