Advertisement

Origin and provenance of 2 Ma–2 Ga zircons ejected by phreatomagmatic eruptions of Pliocene basalts in southern Slovakia

  • Jean-Louis PaquetteEmail author
  • Monika Huraiová
  • Ondrej Nemec
  • Abdelmouhcine Gannoun
  • Katarina Šarinova
  • Vratislav Hurai
Original Paper
  • 92 Downloads

Abstract

U–Pb ages of zircons recovered from Pliocene pyroclastic deposits in northern part of the Cenozoic intra-Carpathian back-arc basin (Pannonian Basin) span the interval from Pliocene (2.2 Ma) to Paleoproterozoic (Orosirian–Rhyacian, 1850–2115 Ma). The scattered U–Pb ages reflect eruption ages of the host basaltic volcanic centres, two episodes of post-Eocene magmatic crustal growth, and the possible tectonic affiliation, provenance and age of the subjacent basement or the sedimentary basin detritus sampled by the basaltic magma. The youngest zircons define the maximum ages of phreatomagmatic eruptions during the Late Miocene–Pliocene extension. These zircons are distinguished from older zircons by Zr/Hf (40–90) and Th/U ratios (0.5–4.5) as well as super-chondritic εHf(t) values ranging from + 7 to + 14, indicating mantle-derived parental magmas. The locally increased Th/U ratios (up to 8) accompanied by Zr/Hf > 60 are diagnostic of evolved phonolite parental melt. Hence, the youngest zircons can be interpreted as antecrysts, originating from evolved melts cogenetic with the host alkali basalts. In contrast, older zircons represent xenocrysts scavenged by the uprising basalt from surrounding rocks. Subordinate Eocene–Early Oligocene (29–38 Ma) sub-group of zircon xenocrysts is coincidental with the magmatism and volcanism along the Periadriatic lineament and the middle-Hungarian zone. The Early Miocene (18 Ma) cluster is coeval with the deposition of the Bükk Mountains felsic ignimbrite correlated with the onset of the back-arc extension that triggered Miocene sedimentation within the Pannonian Basin. The Eocene–Early Oligocene zircons have been likely scavenged from pyroclastic and ash-fall deposits of the Palaeogene retroarc basin subjacent to the Miocene basin infilling. Sub-chondritic εHf(t) values between − 2.5 and − 8 in the Eocene–Early Miocene zircons attest their crystallization from subduction-related felsic-to-intermediate melts containing large amounts of recycled crustal material. Palaeozoic–Proterozoic zircons create a heterogeneous population with variable trace element abundances and εHf(t) values. The determined age clusters are reminiscent of some basement units cropping out recently in Central Western Carpathians. Zircon Hf isotope data indicate recycling of up to 3.4 Ga old mafic crust and also the presence of 2 Ga old juvenile mafic crust. These units had either underlain the northern part of the Pannonian Basin during Pliocene or had been exposed during the deposition of Miocene clastic sediments. The absence of Mesoproterozoic, Grenvillian zircons (0.9–1.8 Ga) in the pre-Cenozoic population of zircon xenocrysts is provisionally interpreted as indicating the evolution of the zircon source area within the west-African Craton.

Keywords

Basalt Zircon U–Pb–Hf isotopes Pannonian Basin Western Carpathians 

Notes

Acknowledgements

We thank the VEGA grant 1/0143/18 from the Slovak Grant Agency for financial support. The manuscript benefited from critical comments from R. Lukács and M. Tiepolo.

Supplementary material

531_2019_1779_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)
531_2019_1779_MOESM2_ESM.xlsx (52 kb)
Supplementary material 2 (XLSX 52 kb)
531_2019_1779_MOESM3_ESM.xlsx (24 kb)
Supplementary material 3 (XLSX 23 kb)
531_2019_1779_MOESM4_ESM.xlsx (21 kb)
Supplementary material 4 (XLSX 20 kb)

References

  1. Amli R, Griffin WL (1975) Standards and correction factors for microprobe analysis of REE minerals. Amer Mineralogist 60:599–606Google Scholar
  2. Aspen P, Upton BGJ, Dickin AP (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: high-pressure syenitic debris from upper mantle sources? Eur J Mineral 2:503–517Google Scholar
  3. Balogh K, Miháliková A, Vass D (1981) Radiometric dating of basalts in southern and central Slovakia. Záp Karpaty Sér Geol 7:113–126Google Scholar
  4. Belousova EA, Griffin WL, O´Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622Google Scholar
  5. Benedek K (2002) Paleogene igneous activity along the easternmost segment of the Periadriatic-Balaton lineament. Acta Geol Hung 45:359–371Google Scholar
  6. Bielik M, Alasonati-Tašárová Z, Zeyen H, Dérerová J, Afonso JC, Csicsay K (2010) Improved geophysical image of the Carpathian-Pannonian basin region. Acta Geol Geophys Hun 45:284–298Google Scholar
  7. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-visited. Chem Geol 351:324–334Google Scholar
  8. Bouloton J, Paquette J-L (2014) In situ U-Pb zircon geochronology of Neogene garnet-bearing lavas from Slovakia (Carpatho-Pannonian region, Central Europe). Lithos 184–187:17–26Google Scholar
  9. Csontos L (1995) Tertiary tectonic evolution of the intra-Carpathian area: a review. Acta Vulcanol 7:1–13Google Scholar
  10. Danišík M, Fodor L, Dunkl I, Gerdes A, Csizmeg J, Hámor-Vidó M, Evans NJ (2015) A multi-system geochronology in the Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low-temperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova 27:258–269Google Scholar
  11. Dobosi G, Kempton PD, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P (2003) Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2: Sr-Nd-Pb-Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contrib Mineral Petrol 144:671–683Google Scholar
  12. Downes H, Vaselli O (1995) The lithospheric mantle beneath the Carpathian-Pannonian Region: a review of trace element and isotopic evidence from ultramafic xenoliths. Acta Vulcanol 7:219–229Google Scholar
  13. Downes H, Carter A, Armstrong R, Dobosi G, Embey-Isztin A (2015) Lower crustal zircons reveal Neogene metamorphism beneath the Pannonian Basin (Hungary). Open Geosci 7:223–233Google Scholar
  14. Embey-Isztin A, Dobosi G (1995) Mantle source characteristics from Miocene–Pliocene alkali basalts, Carpathian-Pannonian region: a review of trace elements and isotopic composition. Acta Volcanol 7:155–166Google Scholar
  15. Fernández-Suárez J, Gutiérrez-Alonso G, Pastor-Galán D, Hofmann M, Murphy JB, Linnemann U (2014) The Ediacaran-Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. Int J Earth Sci 103:1335–1357Google Scholar
  16. Griffin WL, Wang X, Jackson SE, Pearson NJ, O´Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269Google Scholar
  17. Guo J, O´Reilly SY, Griffin WL (1996) Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochim Cosmochim Acta 60:2347–2363Google Scholar
  18. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. In: Beccaluva L, Bianchini L, Wilson M (eds), Cenozoic Volcanism in the Mediterranean Area. Geol Soc Amer Spec Pap 418, pp 67–90Google Scholar
  19. Harangi S, Downes H, Seghedi I (2006) Tertiary-Quaternary subduction processes and related magmatism in Europe. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geol Soc London, London, pp 67–190Google Scholar
  20. Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophys 681:278–304Google Scholar
  21. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophys 226:333–357Google Scholar
  22. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds), Zircon. Rev Mineral Geochem 53:27–62Google Scholar
  23. Hovorka D, Fejdi P (1980) Spinel peridotite xenoliths in the West Carpathian Late Cenozoic alkali basalts and their tectonic significance. Bull Volcanol 43:95–106Google Scholar
  24. Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-fO 2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29Google Scholar
  25. Hurai V, Huraiová M, Konečný P, Thomas R (2007) Mineral-melt-fluid composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern Slovakia. Mineral Mag 71:63–79Google Scholar
  26. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U-Th-Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287Google Scholar
  27. Hurai V, Paquette J-L, Huraiová M, Sabol M (2012) U-Pb geochronology of zircons from fossiliferous sediments of the Hajnáčka I maar (Slovakia)–type locality of the MN 16a biostratigraphic subzone. Geol Mag 149:989–1000Google Scholar
  28. Hurai V, Danišík M, Huraiová M, Paquette J-L, Ádám A (2013) Combined U/Pb and (U-Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Mineral Petrol 166:1235–1251Google Scholar
  29. Huraiová M, Konečný P (1994) Pressure-temperature conditions and oxidation state of the upper mantle in southern Slovakia. Acta Geol Hun 37:33–44Google Scholar
  30. Huraiová M, Konečný P, Konečný V, Simon K, Hurai V (1996) Mafic and salic igneous xenoliths in late Tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916Google Scholar
  31. Huraiová M, Dubessy J, Konečný P, Simon K, Kráľ J, Zielinski G, Lipka J, Hurai V (2005) Glassy orthopyroxene granodiorites of the Pannonian Basin – tracers of ultra-high-temperature deep-crustal anatexis triggered by Tertiary basaltic volcanism. Contrib Mineral Petrol 148:615–633Google Scholar
  32. Huraiová M, Konečný P, Holický I, Milovská S, Nemec O, Hurai V (2017a) Mineralogy and origin of peralkaline granite-syenite nodules ejected in Pleistocene basalt from Bulhary, southern Slovakia. Period Mineral 86:1–17Google Scholar
  33. Huraiová M, Paquette J-L, Konečný P, Gannoun A, Hurai V (2017b) Geochemistry, mineralogy, and zircon U-Pb-Hf isotopes in peraluminous A-type granite xenoliths in Pliocene-Pleistocene basalts of northern Pannonian Basin (Slovakia). Contrib Mineral Petrol 172:59Google Scholar
  34. Huraiová M, Konečný P, Hurai V (2019) Niobium mineralogy of Pliocene A1-type granite of the Carpathian back-arc basin. Central Europe. Minerals 9:488Google Scholar
  35. Iizuka T, Yamaguchi T, Hibiya Y, Amelin Y (2015) Meteorite zircon constraints on the bulk Lu − Hf isotope composition and early differentiation of the Earth. Proc Nat Acad Sci 112:5331–5336Google Scholar
  36. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69Google Scholar
  37. Johnson CM (1989) Isotopic zonations in silicic magma chambers. Geology 17:1136–1139Google Scholar
  38. Kázmér M, Kovács S (1985) Permian-Paleogene paleogeography along the eastern part of the Insubric-Periadriatic lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84Google Scholar
  39. Kázmér M, Dunkl I, Frisch W, Kuhlemann J, Oszvárt P (2003) The Paleogene forearc basin of the Eastern Alps and Western Carpathians: subduction, erosion and basin evolution. J Geol Soc London 160:413–428Google Scholar
  40. Konečný V (2007) Palaeogeographic reconstruction, volcanology and evolution of the Cerová basalt formation. In: Vass D, Elečko M, Konečný V (eds) Geology of Lučenská dolina Depression and Cerová vrchovina Upland. Štátny Geologický Ústav D, Štúra, pp 196–202Google Scholar
  41. Konečný V, Lexa J (2007) Pliocene-Pleistocene. In: Vass D, Elečko M, Konečný V (eds) Geology of Lučenská dolina Depression and Cerová vrchovina Upland. Štátny Geologický Ústav D, Štúra, pp 72–117Google Scholar
  42. Konečný P, Konečný V, Lexa J, Huraiová M (1995a) Mantle xenoliths in alkali basalts of Southern Slovakia. Acta Vulcanol 7:241–247Google Scholar
  43. Konečný V, Balogh K, Orlický O, Lexa J, Vass D (1995b) Evolution of the Neogene-Quaternary alkali basalt volcanism in central and southern Slovakia (West Carpathians). In Proc XI Congress Carpatho-Balkan Geol Assoc, Athens, pp 533–538Google Scholar
  44. Konečný V, Lexa J, Balogh K (1999) Neogene-Quaternary alkali basalt volcanism in Central and Southern Slovakia (Western Carpathians). Geolines 9:67–75Google Scholar
  45. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Pub Ser 1:105–123Google Scholar
  46. Konečný V, Balogh K, Orlický O, Vass D, Lexa J (2003) Timing of the Neogene-Quaternary alkali basalt volcanism in Central and Southern Slovakia (Western Carpathians). In Proc XVII Congress Carpathian-Balkan Geol Assoc, Bratislava, September 1–4, 2002, Geol Carpath Spec Issue 53, ISSN 1335-0552Google Scholar
  47. Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating using an electron microprobe. Mineralia Slov 36:225–235 (in Slovak) Google Scholar
  48. Kováč M (2000) Geodynamic, paleogeographic and structural development of the Carpatho-Pannonian region during Miocene. New insight into Neogene Basins of Slovakia. Veda Publishers, Bratislava, p 202Google Scholar
  49. Kovács I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nograd-Gomor Volcanic Field, Carpathian-Pannonian Region (N Hungary/S Slovakia). Mineral Petrol 85:269–290Google Scholar
  50. Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nograd-Gomor Volcanic Field, Carpathian-Pannonian region (northern Hungary–southern Slovakia). Tectonophys 393:139–161Google Scholar
  51. Kovács I, Csontos L, Szabó C, Bali E, Falus G, Benedek K, Zajacz Z (2007) Paleogene–early Miocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: An integrated approach. In: Beccaluva L, Bianchini G, Wilson M (eds), Cenozoic Volcanism in the Mediterranean Area. Geol Soc Amer Spec Pap 418:93–112Google Scholar
  52. Lexa J, Konečný V (1974) The Carpathian Volcanic Arc: a discussion. Acta Geol Hung 18:279–294Google Scholar
  53. Lexa J, Seghedi I, Németh K, Szakácz A, Konečný V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene-Quaternary volcanic forms in the Carpathian-Pannonia region: a review. Centr Eur J Geosci 2:207–270Google Scholar
  54. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophys 461:21–43Google Scholar
  55. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton-Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278Google Scholar
  56. Liptai N, Patkó L, Kovács IJ, Hidas K, Zs Pintér, Jeffries T, Zajacz Z, O´Reilly SY, Griffin WL, Pearson NJ, Szabó C (2017) Multiple metasomatism beneath the Nógrád-Gömör Volcanic Field (northern Pannonian Basin) revealed by upper mantle peridotite xenoliths. J Petrol 58:1107–1144Google Scholar
  57. Ludwig KR (2001) User’s manual for Isoplot/Ex Version 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Pub Vol 1a, 55 pGoogle Scholar
  58. Lukács R, Harangi S, Bachmann O, Guillong M, Danišík M, Buret Y, von Quadt A, Dunkl I, Fodor L, Sliwinski J, Soós I, Szepesi J (2015) Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contrib Mineral Petrol 170:52Google Scholar
  59. Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I, Zimmerer M (2018) Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications. Earth Sci Rev 179:1–19Google Scholar
  60. Merlet C (1992) Accurate description of surface ionization in electron probe microanalysis: an improved formulation. X-Ray Spectrom 21:229–238Google Scholar
  61. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299Google Scholar
  62. Moyen JF, Paquette J-L, Ionov DA, Gannoun A, Korsakov AV, Golovin AV, Moine B (2017) Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. Earth Planet Sci Lett 457:149–159Google Scholar
  63. Mullen EK, Paquette J-L, Tepper JH, McCallum IS (2018) Temporal and spatial evolution of the Northern Cascade Arc magmatism revealed by LA-ICP-MS U-Pb zircon dating. Canad J Earth Sci 55:443–462Google Scholar
  64. Nemcok M, Pospíšil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophys 295:307–340Google Scholar
  65. Nemec O, Huraiová M (2018) Provenance study of detrital garnets and rutiles from basaltic pyroclastic rocks of Southern Slovakia. Geol Carpath 69:17–29Google Scholar
  66. Németh K (2011) Some textural characteristics of pyroclastic rocks of small-volume monogenetic volcanoes of southern Slovakia. In:Németh K (Ed), Proc Int Field Workshop on New Advances on Maar-Diatreme Research: Results and Perspectives. Somosköújfalu, Hungary, 9–14 May 2011, pp 15–22Google Scholar
  67. Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophys 352:87–103Google Scholar
  68. O’Neil J, Boyet M, Carlson RW, Paquette J-L (2013) Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet Sci Lett 379:13–25Google Scholar
  69. Paquette J-L, Mergoil-Daniel J (2009) Origin and U-Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France). Contrib Mineral Petrol 158:245–262Google Scholar
  70. Paquette J-L, Piro JL, Devidal JL, Bosse V, Didier A (2014) Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS J 58:4–5Google Scholar
  71. Paquette J-L, Ionov DA, Agashev AM, Gannoun A, Nikolenko EI (2017a) Age, provenance and Precambrian evolution of the Anabar Shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precambr Res 301:134–144Google Scholar
  72. Paquette J-L, Ballèvre M, Peucat JJ, Cornen G (2017b) From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294–295:418–437Google Scholar
  73. Patchett PJ, Tatsumoto M (1980) Lu–Hf total-rock isochron for the eucrite meteorites. Nature 288:571–574Google Scholar
  74. Patchett PJ, Kuovo O, Hedge CE, Tatsumoto M (1981) Evolution of the continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297Google Scholar
  75. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  76. Pupin J-P (2000) Granite genesis related to geodynamics from Hf-Y in zircon. Transact Royal Soc Edinburgh Earth Sci 91:245–256Google Scholar
  77. Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59:3–18Google Scholar
  78. Royden LH, Horváth F, Nagymarosy A, Stegena F (1983) Evolution of the Pannonian Basin system. 2. Subsidence and thermal history. Tectonics 2:91–137Google Scholar
  79. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138Google Scholar
  80. Rudnick RL, Williams IS (1987) Dating the lower crust by ion microprobe. Earth Planet Scie Lett 85:145–161Google Scholar
  81. Schaltegger U, Ulianov A, Müntener O, Ovtcharova M, Peytcheva I, Vonlanthen P, Vennemann T, Antognini M, Girlanda F (2015) Megacrystic zircon with planar fractures in miackite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland). Amer Mineral 100:83–94Google Scholar
  82. Schärer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204Google Scholar
  83. Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687Google Scholar
  84. Schmitt AK, Wetzel F, Cooper KM, Zou H, Wörner G (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J Petrol 51:1053–1085Google Scholar
  85. Schmitt AK, Klitzke M, Gerdes A, Schäfer Ch (2017) Zircon hafnium-oxygen isotope and trace element petrochronology of intraplate volcanic rocks from the Eifel (Germany) and implications for mantle versus crustal origins of zircon megacrysts. J Petrol 58:1841–1870Google Scholar
  86. Seghedi I, Downes H, Szakacs A, Mason PRD, Thirlwall MF, Rosu E, Pécskay Z, Márton E, Panaiotu C (2004) Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonia region: a synthesis. Lithos 72:117–146Google Scholar
  87. Siebel W, Schmitt AK, Danišík M, Chen F, Meier S, Eroglu S (2009) Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat Geosci 2:886–890Google Scholar
  88. Sutherland L, Graham I, Yaxley G, Armstrong R, Giuliani G, Hoskin P, Nechaev V, Woodhead J (2016) Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications. Mineral Petrol 110:399–420Google Scholar
  89. Szabó C, Taylor LA (1994) Mantle petrology and geochemistry beneath Nógrád-Gömör Volcanic Field, Carpathian-Pannonian region. Int Geol Rev 36:328–358Google Scholar
  90. Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophys 208:243–256Google Scholar
  91. Tari G, Báldi T, Báldi-Beke M (1993) Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophys 226:433–455Google Scholar
  92. Tašárová A, Afonso JC, Bielik M, Götze H-J, Hók J (2009) The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophys 475:454–469Google Scholar
  93. Upton BGJ, Finch A, Slaby E (2009) Megacrysts and salic xenoliths in Scottish alkali basalts: derivatives of deep crustal intrusions and small-melt fractions from the upper mantle. Mineral Mag 73:943–956Google Scholar
  94. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11Google Scholar
  95. van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed), Laser Ablation-ICPMS in the Earth Science. Mineral Assoc Canada Short Course 29, pp 239–243Google Scholar
  96. Vass D, Elečko M (1992) Explanations to the Geological Map of Lučenecka kotlina Depression and Cerova vrchovina Upland. D. Štúr Publishers, Bratislava, p 195Google Scholar
  97. Vass D, Elečko M, Konečný V (2007) Geology of the Lučenská kotlina Depression and Cerová vrchovina Upland. D. Štúr Publishers, Bratislava, p 117Google Scholar
  98. Wang X, Griffin WL, Chen J (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochem J 44:65–72Google Scholar
  99. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostandard Newslett 19:1–23Google Scholar
  100. Yu Y, Xu X, Chen X (2010) Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Mineral Petrol 100:75–94Google Scholar
  101. Zajacz Z, Szabó C (2003) Origin of sulfide inclusions in cumulate xenoliths from Nógrád-Gőmőr Volcanic Field, Pannonian Basin (north Hungary/south Slovakia. Chem Geol 194:105–117Google Scholar
  102. Zajacz Z, Kovács I, Szabó C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol 48:853–883Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  • Jean-Louis Paquette
    • 1
    Email author
  • Monika Huraiová
    • 2
  • Ondrej Nemec
    • 2
  • Abdelmouhcine Gannoun
    • 1
  • Katarina Šarinova
    • 2
  • Vratislav Hurai
    • 3
  1. 1.Laboratoire Magmas and VolcansUniversité Clermont Auvergne, CNRS, IRD, OPGCClermont-FerrandFrance
  2. 2.Department of Mineralogy and PetrologyComenius UniversityBratislavaSlovakia
  3. 3.Institute of Earth SciencesSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations