International Journal of Earth Sciences

, Volume 108, Issue 8, pp 2577–2601 | Cite as

Microfacies, biofacies, and depositional environments of the Bajocian–Bathonian Middle Dhruma carbonates, central Saudi Arabia

  • Aviandy W. Ismanto
  • Septriandi A. Chan
  • Lamidi O. BabalolaEmail author
  • Michael A. Kaminski
  • Khalid A. Al-Ramadan
  • Osman M. Abdullatif
Original Paper


Three cliff-forming outcrops of the Dhruma Formation representing the carbonate platform in the Hafirat Nisha district west of Riyadh, Saudi Arabia, were investigated to identify and understand the microfacies variability in a carbonate ramp setting. An integrated approach including detailed field investigations, petrographic, biofacies, and micropaleontological analyses was used to construct a model of the depositional environments of the investigated outcrop sections. The depositional model indicates that the identified lithofacies were predominantly deposited in outer ramp, middle ramp, inner ramp, and lagoonal settings. The presence of the benthic foraminifera Redmondoides lugeoni and Nautiloculina oolithica and the trace fossil Thalassinoides indicates deposition in shallow-water environments and the prevalence of warm climatic conditions during the Middle Jurassic. The occurrences of calcareous and agglutinated benthic foraminiferal species Pseudomarssonella maxima, Siphovalvulina variabilis, Timidonella sarda, N. oolithica, R. lugeoni, Praekurnubia crusei, Paleopfenderina salernitana, Haurania deserta, Siphovalvulina spp., Lenticulina sp., Textulariopsis sp., and Amijella amiji imply that our studied sections are situated within the Dm-2 to Dm-5 biozones (Bajocian to early Bathonian). This is also supported by the calcareous nannofossil assemblages that show a Bajocian to early Bathonian age. The depositional sequences indicate a shift in the depositional environment from low-energy lagoonal with intermittent shoal complexes in the D2 and D3 Units to predominantly shoal complex and open-marine settings in the D4 Unit, suggesting a seaward shift towards the top of the D4 Unit. The interpreted depositional settings are similar to those previously documented in the subsurface equivalent, Faridah reservoir. This indicates that the investigated D2D4 Units outcrops are excellent analogues of the subsurface reservoir.


Middle Jurassic Dhruma formation Saudi Arabia Microfacies Paleoenvironment 



The authors express their sincere gratitude to G.W. Hughes and A.J. Al-Dhubaib for constructive suggestions and discussions. This work was funded by King Abdulaziz City for Science and Technology (KACST) through project NSTIP-13-OIL1694-04 as part of the National Plan for Science, Technology and Innovation. We are grateful for the support provided by the Geosciences Department and the Research Institute at KFUPM. We thank Ramona Balc (Babes-Bolyai University, Romania) for helping with the nannofossil analysis, and our colleagues Abdullah Alqubalee, Mutasim Osman and Indi Argadestya for their help with the fieldwork and support in the laboratory analyses. The authors thank the reviewers for their fruitful and constructive comments.


  1. Abdelhady AA, Fürsich FT (2015) Sequence architecture of a Jurassic ramp succession from Gebel Maghara (North Sinai, Egypt): implications for eustasy. J Palaeogeogr 4(3):305–330. CrossRefGoogle Scholar
  2. Al-Dhubaib AJ (2010) Taxonomy and paleoenvironments of Middle and Late Jurassic Foraminifera and its associations of Saudi Arabia. Dissertation, University College LondonGoogle Scholar
  3. Al-Hussaini A, Steel RJ, Melvin J, Olariu C, Ertug K, Hooker N (2019) New evidence of regressing and transgressing Jurassic siliciclastic coastlines within the Dhruma Formation in Northern Central Arabia, Saudi Arabia. Sediment Geol 379:114–137. CrossRefGoogle Scholar
  4. Al-Husseini MI (1997) Jurassic Sequence Stratigraphy of the Western and Southern Arabian Gulf. GeoArabia 2:361–382Google Scholar
  5. Allen JRL (1984) Parallel lamination developed from upper-stage plane beds: a model based on the larger coherent structures of the turbulent boundary layer. Sediment Geol 39:227–242CrossRefGoogle Scholar
  6. Anan TI (2014) Facies analysis and sequence stratigraphy of the cenomanian–turonian mixed siliciclastic–carbonate sediments in west Sinai, Egypt. Sediment Geol 307:34–46. CrossRefGoogle Scholar
  7. Arkell WJ (1950) A classification of the Jurassic ammonites. J Paleontol 24:354–364Google Scholar
  8. Athersuch J, Banner FT, Simmons MD (1992) On Trochamijiella gollesstanehi, gen. nov. et sp. nov. (Foraminiferida, Loftusiacea), an index for the Middle Eastern Marine Late Bathonian. J Micropalaeontol 11:7–12CrossRefGoogle Scholar
  9. BouDagher-Fadel MK (2008) Evolution and geological significance of larger benthic foraminifera, 2nd edn. UCL Press, LondonGoogle Scholar
  10. Bown PR, Cooper MKE (1998) Jurassic. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. British Micropaleontology Society Series. Chapman and Hall, London, pp 34–85CrossRefGoogle Scholar
  11. Bown PR, Young JR (1998) Introduction. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. British Micropaleontology Society Series. Chapman and Hall, London, pp 1–15CrossRefGoogle Scholar
  12. Cantrell DL (2006) Cortical fabrics of Upper Jurassic ooids, Arab Formation, Saudi Arabia: implications for original carbonate mineralogy. Sediment Geol 186:157–170. CrossRefGoogle Scholar
  13. Cantrell DL, Nicholson PG, Hughes GW, Miller MA, Buhllar AG, Abdelbagi ST, Norton AK (2014) Tethyan petroleum systems of Saudi Arabia. AAPG Mem 106:613–639Google Scholar
  14. Crespo de Cabrera S, De Keyser, T, Al-Sahlan G, Al-Wazzan H, Kadar, AP, Karam KA (2019) Middle and Upper Jurassic strata of the Gotnia Basin, Onshore Kuwait: sedimentology, sequence stratigraphy, integrated biostratigraphy and palaeoenvironments, part 1. Stratigraphy 16(3):165–193Google Scholar
  15. Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. AAPG Mem 1:108–121Google Scholar
  16. Eid GAA, Breuer P, Aburas A (2015) Stratigraphic and depositional analysis of the Faridah reservoirs in the central and northeastern parts of Saudi Arabia. Poster Presentation AAPG Annual Convention and Exhibition, 31 May–3 June 2015, Denver, Colorado, United StatesGoogle Scholar
  17. Eltom HA, Abdullatif MA, Babalola LO, Bashari MA, Yassin M, Osman MS, Abdulraziq AM (2017) Integration of facies architecture, ooid granulometry and morphology for prediction of reservoir quality, Lower Triassic Khuff formation, Saudi Arabia. Pet Geosci 23(2):177–189CrossRefGoogle Scholar
  18. Eltom HA, Gonzalez LA, Hasiotis ST, Rankey EC, Cantrell DL (2018) Paleogeographic and paleo-oceanographic influences on carbon isotope signatures: implications for global and regional correlation, Middle-Upper Jurassic of Saudi Arabia. Sediment Geol 364:89–102CrossRefGoogle Scholar
  19. El-Yamani MS, Al-Ramadan K, Munnecke A, Cantrell DL, Abdulghani W, Reub L (2018) Microfacies, depositional environments and meter-scale cycles of the Middle Jurassic Tuwaiq Mountain Formation, central Saudi Arabia. J Afr Earth Sci 145:80–101. CrossRefGoogle Scholar
  20. Embry AF, Klovan JE (1971) A Late Devonian reef tract on northeastern Banks Island, NWT. Bull Can Pet Geol 19:730–781Google Scholar
  21. Enay R, Mangold C (1994) Premieres zonations par ammonites Jurassique d’Arabie Seoudite une reference pour la province Arabie. Geobios 27:161–174CrossRefGoogle Scholar
  22. Enay R, Le Nindre YM, Manivit J, Vaslet D (1987) Le Jurassique d’arabie saoudite centrale: nouvelles données sur la lithostratigraphie, les paléoenvironnements, les faunes d’Ammonites, les âges et les corrélations. Geobios 20:13–65CrossRefGoogle Scholar
  23. Enay R, Mangold C, Almeras Y, Hughes GW (2009) The Wadi Ad-Dawasir “delta”, central Saudi Arabia: a relative sea-level fall of Early Bathonian age. GeoArabia 14:17–52Google Scholar
  24. Fischer JC, Le Nindre YM, Manivit J, Vaslet D (2001) Jurassic gastropod faunas of central Saudi Arabia. GeoArabia 6:63–100Google Scholar
  25. Flügel E (2010) Microfacies of carbonate rock: analysis, interpretation and application, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  26. Gardosh M, Weimer P, Flexer A (2011) The sequence stratigraphy of Mesozoic successions in the Levant margin, southwestern Israel: a model for the evolution of southern Tethys margins. AAPG Bull 95:1763–1794. CrossRefGoogle Scholar
  27. Giraud F, Mattioli E, López-Otálvaro GE, Lécuyer C, Suchéras-Marx B, Alméras Y, Martineau F, Arnaud-Godet F, De Kaenel E (2016) Deciphering processes controlling mid-Jurassic coccolith turnover. Mar Micropaleontol 125:36–50CrossRefGoogle Scholar
  28. Honig MR, John CM (2015) Sedimentological and isotopic heterogeneities within a Jurassic carbonate ramp (UAE) and implications for reservoirs in the Middle East. Mar Pet Geol 68:240–257. CrossRefGoogle Scholar
  29. Hughes GW (2004) Middle to Upper Jurassic Saudi Arabian carbonate petroleum reservoirs: biostratigraphy, micropaleontology and paleoenvironments. GeoArabia 9:79–114Google Scholar
  30. Hughes GW (2009a) Using Jurassic micropaleontology to determine Saudi Arabian carbonate paleoenvironments. SEPM Spec Publ 93:127–152Google Scholar
  31. Hughes GW (2009b) Biofacies and paleoenvironments of the Jurassic Shaqra Group of Saudi Arabia. Vol Jurassica 6:33–45Google Scholar
  32. Hughes GW (2018) A new thin section based micropaleontological biozonation for the Saudi Arabian Jurassic carbonates. Micropaleontology 64:331–364Google Scholar
  33. Ivanova D, Bonev N, Chatalov A (2015) Biostratigraphy and tectonic significance of lowermost Cretaceous carbonate rocks of the Circum-Rhodope Belt (Chalkidhiki Peninsula and Thrace region, NE Greece). Cretac Res 52:25–63. CrossRefGoogle Scholar
  34. Kadar AP, De Keyser TL, Neog N, Khalif KA (2015) Calcareous nannofossil zonation and sequence stratigraphy of the Jurassic System, onshore Kuwait. GeoArabia 20(4):125–180Google Scholar
  35. Kaminski MA, Chan SA, Balc R, Gull HM, Amao AO, Babalola LO (2018a) Middle Jurassic planktonic foraminifera in Saudi Arabia—a new biostratigraphical marker for the J30 maximum flooding surface in the Middle East. Stratigraphy 15(1):37–46CrossRefGoogle Scholar
  36. Kaminski MA, Malik MH, Setoyama E (2018b) The occurrence of a shallow-water Ammobaculoides assemblage in the Middle Jurassic (Bajocian) Dhruma Formation of Central Saudi Arabia. J Micropalaeontol 37(1):149–152CrossRefGoogle Scholar
  37. Kiessling W, Flugel E, Golonka J (2002) From patterns to processes: the future of reef research. SEPM Spec Publ 72:735–743Google Scholar
  38. Le Nindre YM, Vaslet D, Le Métour J, Bertrand J, Halawani M (2003) Subsidence modelling of the Arabian platform from Permian to Paleogene outcrops. Sediment Geol 156:263–285. CrossRefGoogle Scholar
  39. Lindsey RF, Cantrell DL, Hughes GW, Keith TH, Muller HW, Russell SD (2006) Ghawar Arab-D reservoir: widespread porosity in shoaling-upward carbonate cycles, Saudi Arabia. In: Harris PM, Weber LJ (eds) Giant Hydrocarbon Reservoirs of theWorld: from rocks to reservoir characterisation and modelling. American Association of petroleum Geologists and Society for Sedimentary Geology, Memoir, vol 88. pp 97–137Google Scholar
  40. Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification. Springer, New YorkGoogle Scholar
  41. Manivit J, Pellaton C, Vaslet D, Le Nindre YM, Brosse JM, Breton JP, Fourniguet J (1985) Explanatory notes to the geologic map of the Darma Quadrangle, Sheet 24 H. Ministry of Petroleum and Mineral Resources of Saudi Arabia, Kingdom of Saudi ArabiaGoogle Scholar
  42. Mattioli E, Erba E (1999) Biostratigraphic synthesis of calcareous nannofossil events in the Tethyan Jurassic. Rivista Italiana di Paleontologia e Stratigrafia 105:343–376Google Scholar
  43. Mircescu CV, Pleş G, Bucur II, Granier B (2016) Jurassic-Cretaceous transition on the Getic carbonate platform (Southern Carpathians, Romania): benthic foraminifera and algae. Carnets de Géologie 16:491–512. CrossRefGoogle Scholar
  44. Murris RJ (1980) Middle East: stratigraphic evolution and oil habitat. AAPG Bull 64:597–618Google Scholar
  45. Powers RW, Ramirez LF, Redmond CD, Elberg EL (1966) Geology of the Arabian Peninsula: Sedimentary Geology of Saudi Arabia. Geological Survey Professional Paper 560-D, United States Government Printing Office, WashingtonGoogle Scholar
  46. Schlaich M, Aigner T (2017) Facies and integrated sequence stratigraphy of an epeiric carbonate ramp succession: Dhruma formation, Sultanate of Oman. Depos Rec 3:92–132. CrossRefGoogle Scholar
  47. Schlaich M, Aigner T (2018) Almost forgotten model of epeiric carbonates: the Irwin concept resurrected-Dhruma formation in Sultanate of Oman. In: Poppelreiter MC (ed) Lower triassic to Middle Jurassic sequence of the Arabian Plate. EAGE Special publication, London, pp 273–294Google Scholar
  48. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian plate sequence stratigraphy. GeoArabia Special Publications 2. Gulf Petrolink, BahrainGoogle Scholar
  49. Steineke M (1939) Arabian geology and topography. AAPG Bull 12:1877–1878Google Scholar
  50. Steineke M, Bramkamp BYRA, Sander NJ (1958) Stratigraphic relations of Arabian Jurassic oil. AAPG Spec Publ 18:1294–1329Google Scholar
  51. Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33:711–727. CrossRefGoogle Scholar
  52. Tang D, Al-Eid GZ, Tan W (2018) Squence stratigraphic framework, depositional environments and exploration potential of the Middle Jurassic Dhruma Formation, Eastern Saudi Arabia. In: Poppelreiter MC (ed) Lower Triassic to Middle Jurassic sequence of the Arabian Plate. EAGE Special publication, London, pp 295–310Google Scholar
  53. Tasli K (2001) Benthic foraminifera of the Upper Jurassic Platform Carbonate Sequence in the Aydincik (Içel) Area, Central Taurides, S Turkey. Geol Croat 54:1–14Google Scholar
  54. Tasli K, Altiner D (2010) Pseudomarssonella Redmond 1965 (Foraminifera) and related taxa from the Jurassic platform carbonate succession of the Central Taurides, S Turkey: its phylogenetic relation with the subfamily Paleopfenderininae. Bulletin de la Société Géologique de France 181:443–451CrossRefGoogle Scholar
  55. Tasli K, Altiner D, Koc H, Eren M (2008) Benthic foraminiferal biostratigraphy of the Jurassic platform carbonate succession in the Bolkar Mountains (southern Turkey). Micropaleontology 54:425–444Google Scholar
  56. Thierry J, Barrier E (2000) Middle Toarcian. In: Dercourt J, Gaetani M, Vrielynck B (eds) Atlas of Peri-Tethys palaeogeographical maps. CCGM, Paris, p 268Google Scholar
  57. Tucker M, Wright VP (1990) Carbonate sedimentology. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  58. Yousif IM, Abdullatif OM, Makkawi MH, Bashri MA, Abdulghani WM (2018) Lithofacies, paleoenvironment and high-resolution stratigraphy of the D5 and D6 members of the Middle Jurassic carbonates Dhruma Formation, outcrop analog, central Saudi Arabia. J Afr Earth Sci 139:463–479. CrossRefGoogle Scholar
  59. Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 6:445–504Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Geosciences Department, College of Petroleum Engineering and GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Centre for Integrative Petroleum Research, College of Petroleum Engineering and GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations