Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 8, pp 2531–2544 | Cite as

Ichnofacies distribution in the Eocene-Early Miocene Petra Tou Romiou outcrop, Cyprus: sea level dynamics and palaeoenvironmental implications in a contourite environment

  • Olmo Miguez-SalasEmail author
  • Francisco J. Rodríguez-Tovar
Original Paper

Abstract

Ichnological analysis of the carbonate contourite drift at the Petra Tou Romiou outcrop (southern Cyprus) reveals a relationship between sea level dynamics, shoreline position, sedimentation rate, flow hydrodynamics and trace fossil assemblages. The base of the outcrop is composed of chalky deposits showing the Zoophycos ichnofacies attributes. The transition to the first contouritic interval beds is marked by the gradual disappearance of Zoophycos and dominance of horizontal traces. This change is caused by a gradual sea level fall determining an increase in proximity and energy conditions in the environment that favoured the development of distal Cruziana ichnofacies. Upper contouritic interval beds contain abundant burrow systems with vertical components. Increased ichnodiversity, particularly among vertical morphologies, coincides with the appearance of Teichichnus, Gyrolithes and rare Ophiomorpha, revealing a transition to the proximal Cruziana ichnofacies, related with the maintenance of the previous trend toward more proximal and higher energy settings. The differentiated ichnofacies in the Petra Tou Roumiou carbonate drifts are controlled by complex interactions between variable environmental factors with sea level dynamics playing a major role.

Keywords

Ichnology Contourites Carbonate drift Cruziana ichnofacies Zoophycos ichnofacies Sea level dynamics Cyprus 

Notes

Acknowledgements

This study was funded by project CGL2015-66835-P (Secretaría de Estado de I + D+I, Spain), Research Group RNM-178 (Junta de Andalucía), and Scientific Excellence Unit UCE-2016-05 (Universidad de Granada). The research of Olmo Miguez-Salas is funded through a pre-doctoral grant from the Ministerio de Educación, Cultura y Deporte (Gobierno de España) (Grant no. FPU16/01173). The research was conducted with the “Ichnology and Palaeoenvironment Research Group” (UGR) and “The Drifters Research Group” (RHUL). We would like to thanks Dr. Wolf-Christian Dullo (Editor-in-Chief, International Journal of Earth Sciences), and both reviewers (Drs. Uchman and Netto) for comments and suggestions of the previous version of this manuscript.

References

  1. Anderson BG, Droser ML (1998) Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: an example from the Upper Cretaceous US western interior. Sedimentology 45(2):379–396CrossRefGoogle Scholar
  2. Bertling M, Braddy SJ, Bromley RG, Demathieu GR, Genise J, Mikuláš R, Nielsen JK, Nielsen KSS, Rindsberg AK, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286CrossRefGoogle Scholar
  3. Bromley RG (1991) Zoophycos: strip mine, refuse dump, cache or sewage farm? Lethaia 24(4):460–462CrossRefGoogle Scholar
  4. Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman and Hall, LondonCrossRefGoogle Scholar
  5. Bromley RG, Ekdale AA (1984) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:872–874CrossRefGoogle Scholar
  6. Brongniart AT (1823) Observations sur les Fucoïdes. Mémoires de la Société d’Histoire Naturelle de Paris 1:301–320Google Scholar
  7. Brongniart AT (1828) Histoire des végétaux fossiles ou Recherches botaniques et géologiques sur les végétaux renfermés dans les diverses couches du globe. G. Dufour & E. d’Ocagne, ParisGoogle Scholar
  8. Buatois L, Mángano MG (2011) Ichnology. Organism-Substrate Interactions in Space and Time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. de Gibert JM, Mas G, Ekdale AA (2012) Architectural complexity of marine crustacean burrows: unusual helical trace fossils from the Miocene of Mallorca, Spain. Lethaia 45:574–585CrossRefGoogle Scholar
  10. de la Vara A, Meijer P (2016) Response of Mediterranean circulation to Miocene shoaling and closure of the Indian Gateway: a model study. Palaeogeogr Palaeoclimatol Palaeoecol 442:96–109CrossRefGoogle Scholar
  11. Dorador J, Wetzel A, Rodríguez-Tovar FJ (2016) Zoophycos in deep-sea sediments indicates high and seasonal primary productivity: ichnology as a proxy in palaeoceanography during glacial–interglacial variations. Terra Nova 28:323–328CrossRefGoogle Scholar
  12. Eaton S, Robertson A (1993) The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the eastern Mediterranean. Sed Geol 86(3–4):273–296CrossRefGoogle Scholar
  13. Edwards S, Hudson-Edwards K, Cann J, Malpas J, Xenophontos C (2010) Classic geology in Europe 7 Cyprus. Terra Publishing, HarpendenGoogle Scholar
  14. Frey RW, Howard JD (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. J Paleontol 64(5):803–820CrossRefGoogle Scholar
  15. Frey RW, Pemberton SG (1987) The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bull Can Petrol Geol 35:333–357Google Scholar
  16. Frey RW, Howard JD, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 23:199–229CrossRefGoogle Scholar
  17. Frey RW, Curran HA, Pemberton SG (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350Google Scholar
  18. Ghibaudo G, Grandesso P, Massari F, Uchman A (1996) Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian Molasse Basin, northeastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 120:261–279CrossRefGoogle Scholar
  19. Gingras MK, Dashtgard SE, MacEachern JA, Pemberton SG (2008) Biology of shallow marine ichnology: a modern perspective. Aquat Biol 2(3):255–268CrossRefGoogle Scholar
  20. Hernández-Molina FJ, Hüneke H, Rodriguez-Tovar FJ, Llave E, Ng ZL, Chiarella D, Suklap S, Docherty B, Mena A, Stow DAV (2018) Deep-water bottom current deposits from Cyprus: an ancient analogue for contourite terraces and plastered drifts? In: 20th Int. Sedimentological Congress, 13–17 August 2018. Quebec, Canada. AbstractsGoogle Scholar
  21. Howard JD, Frey RW (1984) Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Can J Earth Sci 21(2):200–219CrossRefGoogle Scholar
  22. Hüneke H, Stow DAV (2008) Identification of ancient contourites: problems and palaeoceanographic significance. In: Rebesco M, Camerlenghi A (eds) Contourites Dev Sedimentol, vol 60. Elsevier, Amsterdam, pp 323–344CrossRefGoogle Scholar
  23. Hüneke H, Hernández-Molina FJ, Rodríguez-Tovar FJ, Llave E, Chiarella D, Mena A, Stow DAV (2019) Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene-Miocene slope succession, southern Cyprus. Sedimentology (submitted) Google Scholar
  24. Kähler G, Stow DAV (1998) Turbidites and contourites of the Palaeogene Lefkara Formation, southern Cyprus. Sed Geol 15:215–231CrossRefGoogle Scholar
  25. Keighley DG, Pickerill RK (1995) Commentary: the ichnotaxa Palaeophycus and Planolites: Historical perspectives and recommendations. Ichnos 3:301–309CrossRefGoogle Scholar
  26. Kinnaird T (2008) Tectonic and sedimentology response to diachronous continental collision in the easternmost Mediterranean, Cyprus. Ph.D. Thesis, University of EdinburghGoogle Scholar
  27. Knaust D (2017) Atlas of trace fossils in well core: appearance, taxonomy and interpretation. Springer, ChamCrossRefGoogle Scholar
  28. Knaust D (2018) The ichnogenus Teichichnus Seilacher, 1955. Earth Sci Rev 177:386–403CrossRefGoogle Scholar
  29. Knaust D, Bromley RG (2012) Trace fossils as indicators of sedimentary environments. Developments in sedimentology, vol 64. Elsevier, AmsterdamGoogle Scholar
  30. Kotake N (1989) Paleoecology of the Zoophycos producers. Lethaia 22:327–341CrossRefGoogle Scholar
  31. Laing BA, Buatois LA, Mángano MG, Narbonne GM, Gougeon RC (2018) Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: exploring the onset of complex burrowing. Palaeogeogr Palaeoclimatol Palaeoecol 495:171–185CrossRefGoogle Scholar
  32. Lauridsen BW, Surlyk F, Bromley RG (2011) Trace fossils of a cyclic chalk-marl succession; the upper Maastrichtian Rørdal Member, Denmark. Cretac Res 32:194–202CrossRefGoogle Scholar
  33. Lord AR, Harrison RW, BouDagher-Fadel M, Stone BD, Varol O (2009) Miocene mass-transport sediments, Troodos Massif, Cyprus. Proc Geol Assoc 120:133–138CrossRefGoogle Scholar
  34. Löwemark L (2012) Ethological analysis of the trace fossil Zoophycos: hints from the Arctic Ocean. Lethaia 45:290–298CrossRefGoogle Scholar
  35. Löwemark L (2015) Testing ethological hypotheses of the trace fossil Zoophycos based on Quaternary material from the Greenland and Norwegian Seas. Palaeogeogr Palaeoclimatol Palaeoecol 425:1–13CrossRefGoogle Scholar
  36. Lucchi RG, Rebesco M (2007) Glacial contourites on the Antarctic Peninsula margin: insight for palaeoenvironmental and palaeoclimatic conditions. In: Viana AR, Rebesco M (eds) Economic and palaeoceanographic significance of contourite deposits. Geol Soc London Special Publ, vol 276, pp 111–127Google Scholar
  37. MacEachern JA, Bann KL, Hampson GJ, Steel RJ, Burgess PM, Dalrymple RW (2008) The role of ichnology in refining shallow marine facies models. In: Hampson GJ, Steel RJ, Burgess PB, Dalrymple RW (eds) Recent advances in models of siliciclastic shallow-marine stratigraphy. SEPM Spec Publ, vol 90, pp 73–116Google Scholar
  38. MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007a) The Ichnofacies Paradigm: a fifty-year retrospective. In: Miller W (ed) Trace fossils. Concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77Google Scholar
  39. MacEachern JA, Pemberton SG, Gingras MK, Bann KL, Dafoe LT (2007b) Use of trace fossils in genetic stratigraphy. In: Miller W (ed) Trace fossils. Concepts, problems, prospects. Elsevier, Amsterdam, pp 105–128Google Scholar
  40. MacEachern JA, Pemberton SG, Gingras MK, Bann KL, James NP, Dalrymple RW (2010) Ichnology and facies models. Facies Models 4:19–58Google Scholar
  41. MacEachern JA, Bann KL, Gingras MK, Zonneveld J-P, Dashtgard SE, Pemberton SG (2012a) The ichnofacies paradigm. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Dev Sedimentol, vol 64. Elsevier, Amsterdam, pp 103–138CrossRefGoogle Scholar
  42. MacEachern JA, Dashtgard SE, Knaust D, Catuneanu O, Bann KL, Pemberton SG (2012b) Sequence stratigraphy. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Dev sedimentol, vol 64. Elsevier, Amsterdam, pp 157–194CrossRefGoogle Scholar
  43. Malpas JA, Gawthorpe RL, Pollard JE, Sharp IR (2005) Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence stratigraphic evolution. Palaeogeogr Palaeoclimatol Palaeoecol 215(3–4):239–264CrossRefGoogle Scholar
  44. Miguez-Salas O, Rodríguez-Tovar FJ (2019) Stable deep-sea macrobenthic trace maker associations in disturbed environments from the Eocene Lefkara Formation, Cyprus. Geobios 52:37–45CrossRefGoogle Scholar
  45. Monaco P, Caracuel Martín JE, Giannetti A, Soria Mingorance JM, Yébenes Simón A (2007) Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and Tertiary examples from Italy and Spain. In: Garassino A, Feldmann RM, Teruzzi G (eds) 3rd Symposium on Mesozoic and Cenozoic Decapod Crustaceans, 35, Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano Memorie, pp 79–82Google Scholar
  46. Monaco P, Bracchini L, Rodríguez-Tovar FJ, Uchman A, Coccioni R (2017) Evolutionary trend of Zoophycos morphotypes from the Upper Cretaceous-Lower Miocene in the type pelagic sections of Gubbio, Italy. Lethaia 50:41–57CrossRefGoogle Scholar
  47. Netto RG, Buatois LA, Mángano MG, Balistieri PRMN (2007) Gyrolithes as a multipurpose burrow: an ethologic approach. Rev Bras Paleontol 10(3):157–168CrossRefGoogle Scholar
  48. Olóriz F, Rodríguez-Tovar FJ (2000) Diplocraterion: a useful marker for sequence stratigraphy and correlation in the Kimmeridgian, Jurassic (Prebetic Zone, Betic Cordillera, southern Spain). Palaios 15(6):546–552CrossRefGoogle Scholar
  49. Pemberton SG, Frey RW, Ranger MJ, MacEachern J (1992) The conceptual framework of ichnology. Appl Ichnol Pet Explor 17:1–32Google Scholar
  50. Pemberton SG, MacEachern JA, Dashtgard SE, Bann KL, Gingras MK, Zonneveld JP (2012) Shorefaces. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Dev Sedimentol, vol 64. Elsevier, Amsterdam, pp 563–603CrossRefGoogle Scholar
  51. Pollard JE, Goldring R, Buck SG (1993) Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. J Geol Soc 150(1):149–164CrossRefGoogle Scholar
  52. Rasmussen SL, Surlyk F (2012) Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. J Geol Soc 169:435–447CrossRefGoogle Scholar
  53. Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154CrossRefGoogle Scholar
  54. Reolid J, Betzler C (2019) The ichnology of carbonate drifts. Sedimentology 66:1427–1448CrossRefGoogle Scholar
  55. Rodríguez-Tovar FJ, Hernández-Molina FJ (2018) Ichnological analysis of contourites: past, Present and future. Earth Sci Rev 183:28–41CrossRefGoogle Scholar
  56. Rodríguez-Tovar FJ, Pérez-Valera F (2008) Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: characterization and environmental implications. Palaios 23(2):78–86CrossRefGoogle Scholar
  57. Rodríguez-Tovar FJ, Uchman A (2004) Trace fossils after the K-T boundary event from the Agost section, SE Spain. Geol Mag 141:429–440CrossRefGoogle Scholar
  58. Rodríguez-Tovar FJ, Uchman A (2017) The Faraoni event (latest Hauterivian) in ichnological record: the Rio Argos section of southern Spain. Cretac Res 79:109–121CrossRefGoogle Scholar
  59. Rodríguez-Tovar FJ, Pérez-Valera F, Pérez-López A (2007) Ichnological analysis in high-resolution sequence stratigraphy: the Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sed Geol 198(3–4):293–307CrossRefGoogle Scholar
  60. Rodríguez-Tovar FJ, Puga-Bernabéu Á, Buatois LA (2008) Large burrow systems in marine Miocene deposits of the Betic Cordillera (Southeast Spain). Palaeogeogr Palaeoclimatol Palaeoecol 268:19–25CrossRefGoogle Scholar
  61. Rodríguez-Tovar FJ, Uchman A, Martín-Algarra A (2009) Oceanic anoxic event at the Cenomanian-Turonian boundary interval (OAE-2): ichnological approach from the Betic Cordillera, southern Spain. Lethaia 42:407–417CrossRefGoogle Scholar
  62. Rodríguez-Tovar FJ, Uchman A, Payros A, Orue-Etxebarria X, Apellaniz E, Molina E (2010) Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeogr Palaeoclimatol Palaeoecol 285:50–65CrossRefGoogle Scholar
  63. Rodríguez-Tovar FJ, Miguez-Salas O, Duarte LV (2017) Toarcian Oceanic Anoxic Event induced unusual behaviour and palaeobiological changes in Thalassinoides tracemakers. Palaeogeogr Palaeoclimatol Palaeoecol 485:46–56CrossRefGoogle Scholar
  64. Rodríguez-Tovar FJ, Hernández-Molina FJ, Hüneke H, Llave E, Stow DAV (2019a) Contourite facies model: improving contourite characterization based on the ichnological analysis. Sed Geol 384:60–69CrossRefGoogle Scholar
  65. Rodríguez-Tovar FJ, Hernández-Molina FJ, Hüneke H, Chiarella D, Llave E, Mena A, Miguez-Salas O, Dorador J, De Castro S, Stow DAV (2019b) Key evidence for distal turbiditic-and bottom-current interactions from tubular turbidite infills. Palaeogeogr Palaeoclimatol Palaeoecol 533:109233CrossRefGoogle Scholar
  66. Rodríguez-Tovar FJ, Miguez-Salas O, Hernández-Molina FJ, Hüneke H (2019c) First record of graphoglyptids in Cyprus: indicative presence of turbidite deposits at the Pakhna Formation. Ichnos (in press) Google Scholar
  67. Sansom P (2018) Hybrid turbidite-contourite systems of the Tanzanian margin. Petrol Geosci 24(3):258–276CrossRefGoogle Scholar
  68. Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley, RG (eds) Trace fossils as indicators of sedimentary environments. Dev. Sedimentol. pp 777–806Google Scholar
  69. Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428CrossRefGoogle Scholar
  70. Stow DAV, Faugères JC (2008) Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Dev Sedimentol, vol 60. Elsevier, Amsterdam, pp 223–256CrossRefGoogle Scholar
  71. Stow DAV, Kahler G, Reeder M (2002) Fossil contourites: type example from an Oligocene palaeoslope system, Cyprus. Geol Soc Lond Mem 22(1):443–455CrossRefGoogle Scholar
  72. Thistle D, Yingst JY, Fauchald K (1985) A deep-sea benthic community exposed to strong nearbottom currents on the Scotian Rise (western Atlantic). Mar Geol 66:91–112CrossRefGoogle Scholar
  73. Thistle D, Ertman SC, Fauchald K (1991) The fauna of the HEBBLE site: Patterns in standing stock and sediment-dynamic effects. Mar Geol 99:413–422CrossRefGoogle Scholar
  74. Uchman A (1998) Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Ann Soc Geol Pol 68:105–218Google Scholar
  75. Uchman A (2009) The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeogr Palaeoclimatol Palaeoecol 276(1–4):107–119CrossRefGoogle Scholar
  76. Uchman A, Hanken NM (2013) The new trace fossil Gyrolithes lorcaensis isp. n. from the Miocene of SE Spain and a critical review of the Gyrolithes ichnospecies. Stratigr Geol Correl 21(3):312–322CrossRefGoogle Scholar
  77. Uchman A, Wetzel A (2012) Deep-sea fans. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Dev. Sedimentol. pp. 643–671Google Scholar
  78. Uchman A, Caruso C, Sonnino M (2012) Taxonomic review of Chondrites affinis (Sternberg, 1833) from Cretaceous-Neogene offshore-deep-sea Tethyan sediments and recommendation for its further use. Riv Ital Paleontol S 118(2):313–324Google Scholar
  79. Wetzel A, Uchman A (2012) Hemipelagic and pelagic basin plains. In: Knaust D, Bromley, RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64. Elsevier, pp 673–701Google Scholar
  80. Wetzel A, Werner F, Stow DAV (2008) Bioturbation and biogenic sedimentary structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Dev Sedimentol, vol 60. Elsevier, Amsterdam, pp 183–202CrossRefGoogle Scholar
  81. Wetzel A, Tjallingii R, Stattegger K (2010) Gyrolithes in Holocene estuarine incised-valley fill deposits, offshore southern Vietnam. Palaios 25(4):239–246CrossRefGoogle Scholar
  82. Zhang LJ, Fan RY, Gong YM (2015) Zoophycos macroevolution since 541 Ma. Sci Rep 5:14954CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Departamento de Estratigrafía y PaleontologíaUniversidad de GranadaGranadaSpain

Personalised recommendations