Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 8, pp 2443–2467 | Cite as

Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland

  • M.-E. EpinEmail author
  • G. Manatschal
  • M. Amman
  • C. Ribes
  • A. Clausse
  • T. Guffon
  • M. Lescanne
Review Article
  • 113 Downloads

Abstract

Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex; however, the associated morpho-tectonic and magmatic processes remain ill constrained. The aim of this study is to describe the 3D top basement morphology, timing, and processes controlling the formation of an exhumed mantle domain preserved over about 200 km2 in the Platta nappe in SE Switzerland. Detailed mapping of parts of the Platta nappe enabled to document the top basement architecture of an exhumed mantle domain, and to investigate its link to later, rift/oceanic structures, magmatic additions, and hydrothermal fluid systems. Our observations show: (1) a polyphase deformation history associated with mantle exhumation along exhumation faults overprinted by later high-angle normal faults, (2) a structured top basement morphology capped by magmato-sedimentary sequences, (3) a tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and (4) fluid systems related to serpentinization, calcification, hydrothermal vents, rodingitization, and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide new information on the temporal and spatial evolution of the tectonic and magmatic processes and their link to hydrothermal and sedimentary systems controlling the formation of ultra-distal, magma-poor rifted margins, and lithospheric breakup.

Keywords

Ocean–continent transition Tectono-magmatic evolution Mantle exhumation Magma-poor rifting Alps 

Notes

Acknowledgements

The authors are grateful to the financial support of Total S.A. supporting the Ph.D. of the fist author. We would also like to thank the numerous colleagues from academia and industry that participated in field excursions through the study area and contributed in a constructive way to the work that we present in this paper. Thanks to O. Jäger from Bivio for giving access to unpublished drilling data for geotechnical application (Bohr Company: Nicol. Hartmann & Cie. AG St. Moritz; Bohr Master: Pedro Menenzes). We particularly thank the reviewers Adrian Pfiffner and Torger Bjørge Andersen, and the Editor Wolf-Christian Dullo for their work.

Supplementary material

531_2019_1772_MOESM1_ESM.pdf (19.3 mb)
Supplementary material 1 (PDF 19787 kb)

References

  1. Amann M (2017) Evolution du magmatisme et du métasomatisme dans une marge passive pauvre en magma durant l’initiation de l’accrétion océanique: exemple de la marge fossile de la Platta (Alpes suisses) et comparaison avec le système actuel Ibérie-Terre Neuve. Université de Strasbourg, StrasbourgGoogle Scholar
  2. Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos 112(1–2):103–117CrossRefGoogle Scholar
  3. Baumgartner P (1987) Age and genesis of Tethyan Jurassic radiolarites. Eclogae Geol Helv 80(3):831–879Google Scholar
  4. Bernoulli D, Jenkyns HC (2009) Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56(1):149–190CrossRefGoogle Scholar
  5. Bernoulli D, Manatschal G, Desmurs L, Muntener O (2003) Where did Gustav Steinmann see the trinity? Back to the roots of an Alpine ophiolite concept. Spec Pap Geol Soc Am, 93–110Google Scholar
  6. Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H (2001) Radiolarite ages in Alpine-Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys-Atlantic connection. Geol Soc Am Bull 113(1):129–143CrossRefGoogle Scholar
  7. Blackman DK, Karson JA, Kelley DS, Cann JR, Früh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL (2002) Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30 N): implications for the evolution of an ultramafic oceanic core complex. Mar Geophys Res 23(5–6):443–469CrossRefGoogle Scholar
  8. Boillot G, Recq M, Winterer E, Meyer A, Applegate J, Baltuck M, Bergen J, Comas M, Davies T, Dunham K (1987a) Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics 132(4):335–342CrossRefGoogle Scholar
  9. Boillot G, Winterer E, Meyer A (1987b) Leg 103. In: Paper presented at the Proceedings of Ocean Drilling Program, Initial ReportsGoogle Scholar
  10. Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res Solid Earth 91(B1):599–631CrossRefGoogle Scholar
  11. Borowski WS, Cagatay N, Tournois Y, Paull CK (2001) Data report: Carbon isotopic composition of dissolved CO2, CO2 gas, and methane, Blake-Bahama Ridge and northeast Bermuda Rise, ODP Leg 172. In: Proceedings ODP, Scientific Results, 172, 1Google Scholar
  12. Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30 N). Geochem Geophys Geosyst.  https://doi.org/10.1029/2005gc001074 CrossRefGoogle Scholar
  13. Boschi C, Dini A, Früh-Green GL, Kelley DS (2008) Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N): insights from B and Sr isotope data. Geochim Cosmochim Acta 72(7):1801–1823CrossRefGoogle Scholar
  14. Cannat M, Casey JF (1995) An ultramafic lift at the Mid-Atlantic Ridge: successive stages of magmatism in serpentinized peridotites from the 15 N region. Mantle and lower crust exposed in oceanic ridges and in ophiolites. Springer, Dordrecht, pp 5–34CrossRefGoogle Scholar
  15. Coltat R, Boulvais P, Branquet Y, Collot J, Epin M, Manatschal G (2019) Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition. Geology 47(2):183–186CrossRefGoogle Scholar
  16. Cornelius, H (1932) Geologische Karte der Err-Julier-Gruppe 1: 25000. Schweizeriche Geologiche Kommission Spezialkarte, 115A, ZurichGoogle Scholar
  17. Cornelius H (1950) Geologie des Err-Julier-Gruppe: Der Gebirgsbau. Beträge zur Geologischen Karte Schweiz NF 70/2,1-264Google Scholar
  18. Decandia F, Elter P (1972) La “zona” ofiolitifera del Bracco nel settore compreso fra Levanto e la Val Gravena (Apennino ligure): Società Geologica Italiana. Bulletin 11:37–64Google Scholar
  19. Della Casa P, Naef L, Turck R (2016) Prehistoric copper pyrotechnology in the Swiss Alps: approaches to site detection and chaîne opératoire. Quat Int 402:26–34CrossRefGoogle Scholar
  20. Desmurs L, Manatschal G, Bernoulli D (2001) The Steinmann Trinity revisited: mantle exhumation and magmatism along an ocean-continent transition: the Platta nappe, eastern Switzerland. Geol Soc Lond Spec Publ 187:235–266CrossRefGoogle Scholar
  21. Desmurs L, Müntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland. Contrib Miner Petrol 144(3):365–382CrossRefGoogle Scholar
  22. Dietrich VJ (1969) Die Ophiolithe des Oberhalbsteins (Graubünden) und das Ophiolithmaterial der ostschweizerischen Molasseablagerungen Google Scholar
  23. Dietrich V (1970) Die Stratigraphie der Platta-Decke: Fazielle Zusammenhänge zwischen Oberpenninikum und Unterostalpin. Geologisches Institut der Eidg Technischen Hochschule und der Universität Zürich, ZürichGoogle Scholar
  24. Dietrich V (1972) Die sulfidischen Vererzungen in den Oberhalbsteiner Serpentiniten. Beiträge zur Geologischen Karte der Schweiz, geotechnical services, 49Google Scholar
  25. Dietrich VJ (1976) Evolution of the Eastern Alps: a plate tectonics working hypothesis. Geology 4(3):147–152CrossRefGoogle Scholar
  26. Dürr S (1992) Structural history of the Arosa Zone between Platta and Err nappes east of Marmorera (Grisons): multi-phase deformation at the Penninic-Austroalpine plate boundary. Eclogae Geol Helv 85(2):361–374Google Scholar
  27. Epin M-E, Manatschal G (2018) Three-dimensional architecture, structural evolution, and role of inheritance controlling detachment faulting at a hyperextended distal margin: the example of the err detachment system (SE Switzerland). Tectonics 37(12):4494–4514Google Scholar
  28. Epin M-E, Manatschal G, Amann M (2017) Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss J Geosci 110(2):419–438.  https://doi.org/10.1007/s00015-017-0271-6 CrossRefGoogle Scholar
  29. Eppel H (1997) Sauerstoff-und Kohlenstoff-Isotopensystematik schwach metamorpher Sedimentgesteine des Oberhalbsteins (Graubünden, Schweiz). (DISS. ETH NR 12369)Google Scholar
  30. Eppel H, Abart R (1997) Grain-scale stable isotope disequilibrium during fluid-rock interaction; 2, an example from the Penninic-Austroalpine tectonic contact in eastern Switzerland. Am J Sci 297(7):707–728CrossRefGoogle Scholar
  31. Escartín J, Mével C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15 45′N. Geochem Geophys Geosyst.  https://doi.org/10.1029/2002gc000472,8 CrossRefGoogle Scholar
  32. Ferreiro Mählmann R (1994) Zur Bestimmung von Diagenesehöhe und beginnender Metamorphose: Temperaturgeschichte und Tektogenese des Austroalpins und Südpenninikums in Vorarlberg und Mittelbünden: Institut für Geochemie, Petrologie und Lagerstättenkunde der Johann Wolfgang Goethe UniversitätGoogle Scholar
  33. Ferreiro Mählmann R (1996) The pattern of diagenesis and metamorphism by vitrinite reflectance and illite-‘crystallinity’in Mittelbünden and in the Oberhalbstein. Part 2: correlation of coal petrographical and of mineralogical parameters. Schweiz Miner Petrogr Mitt 76:23–46Google Scholar
  34. Finger W (1978) Die zone von Samaden (unterostalpine Decken, Graubünden) und ihre jurassischen Brekzien. Diss. Naturwiss. ETH Zürich, Nr. 6145, 0000. Ref.: Trümpy, R.; Korref.: Hsu, KJ, Zürich. (NF 224:1-140)Google Scholar
  35. Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubunden, Switzerland)-evidence for early cretaceous opening of the Valais Ocean. Schweiz Miner Petrogr Mitt 74(3):437–448Google Scholar
  36. Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108(9):1120–1133CrossRefGoogle Scholar
  37. Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87(2):559–612Google Scholar
  38. Früh-Green GL, Weissert H, Bernoulli D (1990) A multiple fluid history recorded in Alpine ophiolites. J Geol Soc 147(6):959–970CrossRefGoogle Scholar
  39. Gillard M, Autin J, Manatschal G (2016) Fault systems at hyper-extended rifted margins and embryonic oceanic crust: structural style, evolution and relation to magma. Mar Pet Geol 76:51–67CrossRefGoogle Scholar
  40. Handy MR, Herwegh M, Kamber B, Tietz R, Villa I (1996) Geochronologic, petrologic and kinematic constraints on the evolution of the Err-Platta boundary, part of a fossil continent-ocean suture in the Alps (eastern Switzerland). Schweiz Miner Petrogr Mitt 76(3):453–474Google Scholar
  41. Harding JL, Van Avendonk HJ, Hayman NW, Grevemeyer I, Peirce C, Dannowski A (2017) Magmatic-tectonic conditions for hydrothermal venting on an ultraslow-spread oceanic core complex. Geology 45(9):839–842CrossRefGoogle Scholar
  42. Hayman NW, Grindlay NR, Perfit MR, Mann P, Leroy S, De Lépinay BM (2011) Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochemistry, Geophysics, Geosystems 12(3):Q0AG02.  https://doi.org/10.1029/2010GC003240 CrossRefGoogle Scholar
  43. Howell SM, Olive J-A, Ito G, Behn MD, Escartín J, Kaus B (2019) Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply. Earth Planet Sci Lett 516:176–189CrossRefGoogle Scholar
  44. Kaczmarek M-A, Müntener O (2008) Juxtaposition of melt impregnation and high-temperature shear zones in the upper mantle; field and petrological constraints from the Lanzo Peridotite (Northern Italy). J Petrol 49(12):2187–2220CrossRefGoogle Scholar
  45. Karson JA, Früh-Green G, Kelley DS, Williams E, Yoerger DR, Jakuba M (2006) Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30 N. Geochem Geophys Geosyst.  https://doi.org/10.1029/2005GC001109 CrossRefGoogle Scholar
  46. Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18(4):319–322CrossRefGoogle Scholar
  47. Lagabrielle Y, Lemoine M (1997) Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. Comptes Rendus Acad Sci Ser IIA Earth Planet Sci 325(12):909–920Google Scholar
  48. Lagabrielle Y, Labaume P, de Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4):TC4012.  https://doi.org/10.1029/2009TC002588 CrossRefGoogle Scholar
  49. Lemoine M (1961) La marge externe de la fosse Piémontaise dans les Alpes occidentales. Rev Géogr Phys Géol Dyn IV(3):163–180Google Scholar
  50. Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic imodel. Geology 15(7):622–625CrossRefGoogle Scholar
  51. Manatschal G (1999) Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). J Struct Geol 21(7):777–793CrossRefGoogle Scholar
  52. Manatschal G, Nievergelt P (1997) A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geol Helv 90(1):3–27Google Scholar
  53. Manatschal G, Muntener O, Desmurs L, Bernoulli D (2003) An ancient ocean-continent transition in the Alps: the Totalp, Err-Platta, and Malenco units in the eastern Central Alps (Graubunden and northern Italy). Eclogae Geol Helv 96(1):131–146Google Scholar
  54. Manatschal G, Sauter D, Karpoff AM, Masini E, Mohn G, Lagabrielle Y (2011) The Chenaillet Ophiolite in the French/Italian Alps: an ancient analogue for an oceanic core complex? Lithos 124(3):169–184CrossRefGoogle Scholar
  55. Mohn G, Manatschal G, Masini E, Müntener O (2011) Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). Int J Earth Sci 100(5):937–961CrossRefGoogle Scholar
  56. Müntener O, Hermann J (1996) The Val Malenco lower crust-upper mantle complex and its field relations (Italian Alps). Schweiz Miner Petrogr Mitt 76:475–500Google Scholar
  57. Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet Sci Lett 221:293–308CrossRefGoogle Scholar
  58. Müntener O, Manatschal G, Desmurs L, Pettke T (2009) Plagioclase peridotites in ocean–continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51(1–2):255–294Google Scholar
  59. Nievergelt P, Liniger M, Froitzheim N, Mählmann RF (1996) Early to mid Tertiary crustal extension in the Central Alps: the Turba mylonite zone (eastern Switzerland). Tectonics 15(2):329–340CrossRefGoogle Scholar
  60. Nirrengarten M, Manatschal G, Yuan X, Kusznir N, Maillot B (2016) Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins. Earth Planet Sci Lett 442:121–132CrossRefGoogle Scholar
  61. Peron-Pinvidic G, Shillington DJ, Tucholke BE (2010) Characterization of sills associated with the U reflection on the Newfoundland margin: evidence for widespread early post-rift magmatism on a magma-poor rifted margin. Geophys J Int 182(1):113–136Google Scholar
  62. Perseil E, Latouche L (1989) Decouverte de microstructures de nodules polymetalliques dans les mineralisations manganesiferes metamorphiques de Falotta et de Parsettens (Grisons-Suisse). Miner Depos 24(2):111–116CrossRefGoogle Scholar
  63. Peters T (1963) Mineralogie und petrographie des Totalpserpentins bei Davos: Dissertationsdruckerei Leemann AgGoogle Scholar
  64. Peters T (2005) Blatt Nr. 1257 St.Moritz—Geol. Atlas der Schweiz 1:25’000, Karte 118, mit Erläuterungen. Bundesamt für Wasser und Geologie, BernGoogle Scholar
  65. Peters T (2007) Blatt Nr. 1256 Bivio. Geol. Atlas der Schweiz 1: 25’000, Karte 124, mit Erläuterungen. Bundesamt für Wasser und GeologieGoogle Scholar
  66. Pfiffner OA (2016) Basement-involved thin-skinned and thick-skinned tectonics in the Alps. Geol Mag 153(5–6):1085–1109CrossRefGoogle Scholar
  67. Picazo S, Müntener O, Manatschal G, Bauville A, Karner G, Johnson C (2016) Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: evidence for mantle modification during an extensional cycle. Lithos 266:233–263CrossRefGoogle Scholar
  68. Picazo S, Chenin P, Müntener O, Manatschal G, Karner G, Johnson C (2017) How inheritance, geochemical and geophysical properties of the lithospheric mantle influence rift development and subsequent collision. In: Paper presented at the EGU General Assembly Conference AbstractsGoogle Scholar
  69. Piccardo GB, Rampone E, Vannucci R (1990) Upper mantle evolution during continental rifting and ocean formation: evidences from peridotite bodies of the western Alpine-northern Apennine system. Mém Soc Géol France 156:323–333Google Scholar
  70. Price JB, Wernicke BP, Cosca MA, Farley KA (2018) Thermochronometry across the Austroalpine-Pennine Boundary, Central Alps, Switzerland: orogen-perpendicular normal fault slip on a major “Overthrust” and Its implications for orogenesis. Tectonics 37(3):724–757CrossRefGoogle Scholar
  71. Ring U, Ratschbacher L, Frisch W, Dürr S, Borchert S (1990) The internal structure of the Arosa zone (Swiss-Austrian Alps). Geol Rundsch 79(3):725–739CrossRefGoogle Scholar
  72. Sawyer D, Withmarsh R, Klaus A, Party SS (1994) Leg 149. In: Paper presented at the Proceedings ODP, Init RepGoogle Scholar
  73. Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Frank M, Bernoulli D (2002) The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14(3):156–162CrossRefGoogle Scholar
  74. Schmid S, Froitzheim N (1993) Oblique slip and block rotation along the Engadine line. Eclogae Geol Helv 86(2):569–593Google Scholar
  75. Searle R, Cannat M, Fujioka K, Mével C, Fujimoto H, Bralee A, Parson L (2003) FUJI Dome: a large detachment fault near 64° E on the very slow-spreading southwest Indian Ridge. Geochemistry, Geophysics, Geosystems 4(8):9105CrossRefGoogle Scholar
  76. Staub R (1916) Tektonische Studien im östlichen Berninagebirge: Zürcher & FurrerGoogle Scholar
  77. Staub R (1946) Geologische Karte der Berninagruppe und ihrer Umgebung im Oberengadin, Bergell, Val Malenco, Puschlav und Livigno, 1: 50,000, Nr. 118. Zürich: herausgegeben von der Geologischen Kommission der Schweizerischen Naturforschenden GesellschaftGoogle Scholar
  78. Steinmann G (1905) Geologische Beobachtungen in den Alpen, II. Die Schardtsche Ueberfaltungstheorie und die geologische Bedeutung der Tiefseeabsätze und der ophiolithischen Massengesteine. Berichte der Naturforschenden Gesellschaft zu Freiburg im Breisgau 16:18–67Google Scholar
  79. Steinmann G (1925) Gibt es fossile Tiefseeablagerungen von erdgeschichtlicher Bedeutung? Geol Rundsch 16(6):435–468CrossRefGoogle Scholar
  80. Stille P, Clauer N, Abrecht J (1989) Nd isotopic composition of Jurassic Tethys seawater and the genesis of Alpine Mn-deposits: evidence from Sr-Nd isotope data. Geochim Cosmochim Acta 53(5):1095–1099CrossRefGoogle Scholar
  81. Stöcklin J (1949) Zur Geologie der nördlichen Errgruppe Wischen Val d’Err und Weissenstein (Graubünden). PhD thesis, ETU ZurichGoogle Scholar
  82. Trommsdorff V (1983) Metamorphose magnesiumreicher gesteine: kritischer vergleich von natur, experiment und thermodynamischer datenbasis. Fortschr Miner 61:283–308Google Scholar
  83. Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotite rocks. Schweiz Miner Petrogr Mitt 54:333–352Google Scholar
  84. Trommsdorff V, Piccardo G, Montrasio A (1993) From magmatism through metamorphism to sea floor emplacement of subcontinental Adria lithosphere during pre-Alpine rifting (Malenco, Italy). Schweiz Miner Petrogr Mitt 73(2):191–203Google Scholar
  85. Trümpy R (1975) Penninic-Austroalpine boundary in the Swiss Alps: a presumed former continental margin and its problems. Am J Sci 275:209–238Google Scholar
  86. Trümpy R (1977) The Engadine Line: a sinistral wrench fault in the Central Alps. Geological Society of China, TaipeiGoogle Scholar
  87. Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res Solid Earth 103(B5):9857–9866CrossRefGoogle Scholar
  88. Tucholke B, Sibuet J, Klaus A (2004) Leg 210 summary. Paper presented at the Proceedings of the Ocean Drilling ProgramGoogle Scholar
  89. Turck R, Della Casa P, Naef L (2014) Prehistoric copper pyrotechnology in the south-eastern Swiss Alps: an overview on previous and current research. In: Bullinger J, Crotti P, Huguenin C (eds) De l’âge du Fer à l’usage du verre: Mélanges Gilbert Kaenel, vol 151. CAR, Lausanne, pp 219–227Google Scholar
  90. Weissert HJ, Bernoulli D (1985) A transform margin in the Mesozoic Tethys: evidence from the Swiss Alps. Geol Rundsch 74(3):665–679CrossRefGoogle Scholar
  91. Wernicke B, Axen GJ (1988) On the role of isostasy in the evolution of normal fault systems. Geology 16(9):848–851CrossRefGoogle Scholar
  92. Ziegler WH (1956) Geologische Studien in den Flyschgebieten des Oberhalbsteins (Graubünden)Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de StrasbourgCNRS, UMR7516, Université de StrasbourgStrasbourg CedexFrance
  2. 2.Total S.APauFrance

Personalised recommendations