Advertisement

Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea

  • N. B. KuznetsovEmail author
  • E. A. Belousova
  • W. L. Griffin
  • S. Y. O’Reilly
  • T. V. Romanyuk
  • S. V. Rud’ko
Original Paper
  • 53 Downloads

Abstract

U–Pb dating, Hf-isotope, and trace-element studies on two detrital zircon samples from sandstone interlayers in the Upper Jurassic conglomerates of the Southern coast of the Mountainous Crimea provide new information on the primary crystalline complexes from which those conglomerates were sourced. The U–Pb age spectra of studied zircons suggest that they were most likely sourced from the (meta)sedimentary complexes of the Eastern and Western Pontides blocks and the Dobrogea platform. In particular, a close similarity of the Precambrian age spectra with the detrital zircons from Late Neoproterozoic–Late Paleozoic (meta)sedimentary complexes of the Dobrogea block provides strong supporting evidence for the affinity between the Pre-Mesozoic basement of the Crimea and the Dobrogea platform. The zircons in the first sample were recycled through Dobrogea sedimentary complexes and originated from terranes with Amazonia affinities, while zircons in the second sample were recycled through the Taurides and originated from terranes related to northeastern Africa and Arabia. The strong similarity of the Precambrian parts of the age spectra of the Dobrogea complexes and the sample K15-007 suggests a resemblance of the Crimea’s Pre-Mesozoic foundation and the Dobrogea platform. Initial analytical data are provided in Electronic Supplementary Materials A (ESM A). Descriptions of measurement parameters, methodologies, and constants used to process primary analytical data and some processing results are reported in ESM B (Figs. B1–B8). Schemes of locations within Balkans–Anatolia–Black Sea–Caucasus region the crystalline complexes with Jurassic, Triassic, Permian–Carboniferous, as well as Late Neoproterozoic–Cambrian and Ordovician–Devonian ages are in ESM C (Figs. C1, C3–C5).

Keywords

Detrital zircons U/Pb dating Hf isotopes Of impurity trace-element content Crimea Dobrogea Pontides Paleogeographic reconstructions 

Notes

Acknowledgements

This study has been carried out following the plans of the scientific research of the IPE RAS. The analytical data were obtained using instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS/Au Scope, industry partners and Macquarie University, and ARC FT110100-685 (Belousova E.A.) grant support. Handling of geochemical data, analysis processing, the regional gathering of geological materials, and publication preparation were executed with partial support from the RFBR (Grant 19-05-00284). This is contribution 1348 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1311 in the GEMOC Key Centre.

Funding

IPE RAS (Federal basic funding). Macquarie University ARC FT110100-685 (Belousova E.A.). Russian Foundation Basic Research (Grant 19-05-00284) (Romanyuk T.V.).

Supplementary material

531_2019_1770_MOESM1_ESM.xls (1.9 mb)
Supplementary material 1 (XLS 1957 kb)
531_2019_1770_MOESM2_ESM.xls (2.1 mb)
Supplementary material 2 (XLS 2187 kb)
531_2019_1770_MOESM3_ESM.xls (1.3 mb)
Supplementary material 3 (XLS 1295 kb)
531_2019_1770_MOESM4_ESM.xls (710 kb)
Supplementary material 4 (XLS 709 kb)
531_2019_1770_MOESM5_ESM.xls (1.3 mb)
Supplementary material 5 (XLS 1332 kb)
531_2019_1770_MOESM6_ESM.xls (517 kb)
Supplementary material 6 (XLS 517 kb)
531_2019_1770_MOESM7_ESM.pdf (5.3 mb)
ESM-B.pdf - This file contains descriptions of measurement parameters, methodologies and constants used to process primary analytical data (see ESM A) and some primary processing results in Figs. B1–B8. 7 (PDF 5379 kb)
531_2019_1770_MOESM8_ESM.pdf (9.3 mb)
ESM-C.pdf - This file contains schemes (Figs. C1–C5) of locations within BABSC the crystalline complexes with Jurassic, Triassic, Permian–Carboniferous, Ordovician–Devonian and Late Neoproterozoic–Cambrian ages, as well as the U–Pb age data of some Archean and Paleoproterozoic crystalline complexes of the Ukrainian shield and adjacent regions (Fig. C6). In addition, a comparison of U–Pb ages of detrital zircons from samples K15-007 and K15-003 with data for the Early Cretaceous turbidites of the Caglayan basin, Central Pontides (Z5), and for the Early Oligocene sandstones of the Maikop Groupe, the Sochi-Adler region, the Caucasus (Z9) is presented (Fig. C7). The extended list references used to prepare the paper is presented. 8 (PDF 9476 kb)

References

  1. Adamia S, Zakariadze G, Chkhotua T, Sadradze N, Tsereteli N, Chabukiani A, Gventsadze A (2011) Geology of the Caucasus: a review. Turk J Earth Sci.  https://doi.org/10.3906/yer-1005-11 Google Scholar
  2. Akbayram K, Okay AI, Satir M (2013) Early Cretaceous closure of the Intra-Pontide Ocean in western Pontides (northwestern Turkey). J Geodyn.  https://doi.org/10.1016/j.jog.2012.05.003 Google Scholar
  3. Akdoğan R, Okay AI, Sunal G, Tari G, Meinhold G, Kylander-Clark ARC (2017) Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: central Pontides, Northern Turkey. J Asian Earth Sci.  https://doi.org/10.1016/j.jseaes.2016.11.028 Google Scholar
  4. Allen MB, Morton AC, Fanning CM, Ismail-Zadeh AJ, Kroonenberg SB (2006) Zircon age constraints on sediment provenance in the Caspian region. J Geol Soc Lond.  https://doi.org/10.1144/0016-764920-068 Google Scholar
  5. Avigad D, Abbo A, Gerdes A (2016) Origin of the Eastern Mediterranean: Neotethys rifting along a cryptic Cadomian suture with Afro-Arabia. Soc Am Bull, Geol.  https://doi.org/10.1130/B31370.1 Google Scholar
  6. Balintoni I, Balica C (2016) Peri-Amazonian provenance of the Euxinic Craton components in Dobrogea and of the North Dobrogean Orogen components (Romania): a detrital zircon study. Precam Res.  https://doi.org/10.1016/j.precamres.2016.03.008 Google Scholar
  7. Belousova EA, Walters S, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element compositions as indicators of source rock type. Contrib Miner Petrol.  https://doi.org/10.1007/s00410-002-0364-7 Google Scholar
  8. Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. J Petrol.  https://doi.org/10.1093/petrology/egi077 Google Scholar
  9. Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN, Volozh Y (2008) The East European Craton (Baltica) before and during the assembly of Rodinia. Precam Res.  https://doi.org/10.1016/j.precamres.2007.04.024 Google Scholar
  10. Bozkurt E, Winchester JA, Yigitbas E, Ottley CJ (2008) Proterozoic ophiolites and mafic-ultramafic complexes marginal to the Istanbul Block: an exotic terrane of Avalonian afinity in NW Turkey. Tectonophysics.  https://doi.org/10.1016/j.tecto.2008.04.027 Google Scholar
  11. Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA (Eds) (2004) The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle> Springer, Heidelberg, pp 141Google Scholar
  12. Cavazza W, Federici I, Okay A, Zattin M (2012) Apatite fission-track thermochronology of the Western Pontides (NW Turkey). Geol Magazine.  https://doi.org/10.1017/S0016756811000525 Google Scholar
  13. Celik OF, Marzoli A, Marschik R, Chiaradia M, Neubauer F, Oz I (2011) Early-Middle Jurassic intra-oceanic subduction in the Izmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophysics.  https://doi.org/10.1016/j.tecto.2011.06.007 Google Scholar
  14. Chiu H-Y, Chung S-L, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos.  https://doi.org/10.1016/j.lithos.2013.01.006 Google Scholar
  15. Dokuz A (2011) A slab detachment and delamination model for the generation of Carboniferous high potassium I-type magmatism in the Eastern Pontides, NE Turkey: Köse composite pluton. Gondwana Res.  https://doi.org/10.1016/j.gr.2010.09.006 Google Scholar
  16. Gallhofer D, von Quadt A, Peytcheva I, Schmid SM, Heinrich CA (2015) Tectonic, magmatic and metallogenic evolution of the Late Cretaceous Arc in the Carpathian-Balkan orogeny. Tectonics.  https://doi.org/10.1002/2015TC003834 Google Scholar
  17. Gallhofer D, von Quadt A, Schmid SM, Guillong M, Peytcheva I, Seghedi I (2016) Magmatic and tectonic history of Jurassic ophiolites and associated granitoids from the South Apuseni Mountains (Romania). Swiss J Geosci.  https://doi.org/10.1007/s00015-016-0231-6 Google Scholar
  18. Galoyan G, Rolland Y, Sosson M, Corsini M, Billo S, Verati C, Melkonyan R (2009) Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): evidence for Jurassic back-arc opening and hot spot event between the South Armenian Block and Eurasia. J Asian Earth Sci.  https://doi.org/10.1016/j.jseaes.2008.04.002 Google Scholar
  19. Genc SC (2004) A Triassic large igneous province in the Pontides, northern Turkey: geochemical data for its tectonic setting. J Asian Earth Sci.  https://doi.org/10.1016/S1367-9120(03)00090-7 Google Scholar
  20. Georgiev S, von Quadt A, Heinrich CA, Peytcheva I, Marchev P (2012) Time evolution of a rifted continental arc: integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria. Lithos. https://doi.org/1016/j.lithos.2012.06.020Google Scholar
  21. Goncuoglu MC, Gursu S, Tekin UK, Koksal S (2008) New data on the evolution of the Neotethyan oceanic branches in Turkey: late Jurassic ridge spreading in the Intra-Pontide branch. Ofioliti.  https://doi.org/10.4454/ofioliti.v33i2.366 Google Scholar
  22. Goncuoglu MC, Marroni M, Sayit K, Tekin UK, Ottria G, Pandol L, Ellero A (2012) The Ayli Dag ophiolite sequence (central-northern Turkey): a fragment of Middle Jurassic oceanic lithosphere within the Intra-Pontide suture zone. Ofioliti.  https://doi.org/10.4454/ofioliti.v37i2.407 Google Scholar
  23. Griffin WL, Pearson NJ, Belousova E, Jackson SE, O’Reilly SY, van Achterberg E, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta.  https://doi.org/10.1016/S0016-7037(99)00343-9 Google Scholar
  24. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma genesis, SE China: in situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos.  https://doi.org/10.1016/S0024-4937(02)00082-8
  25. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precam Res.  https://doi.org/10.1016/j.precamres.2003.12.011 Google Scholar
  26. Griffin WL, Belousova EA, Walters SG, O’Reilly SY (2006) Archean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia: U–Pb and Hf-isotope studies of detrital zircons. Aust J Earth Sci 10:100.  https://doi.org/10.1080/08120090500434591 Google Scholar
  27. Griffin WL, Belousova EA, O’Reilly SY (2007) TerraneChron Analysis of Zircons from Western Australian Samples Record. Geol. Survey of Western Australia. V.4Google Scholar
  28. Henderson BJ, Collins WJ, Murphy JB, Gutierrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics.  https://doi.org/10.1016/j.tecto.2015.11.020 Google Scholar
  29. Hippolyte J-C, Müller C, Kaymakc N, Sangu E (2010) Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V (ed) Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society London Special Publications, vol 340.  https://doi.org/10.1144/SP340.7
  30. Kroner U, Mansy J-L, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharao TC, Zedler H, Zeh A, Zulaf G (2008) Variscan tectonics. In: The Geology of Central Europe: Volume 1: Precam and Palaeozoic. Geological Society London, C11. 65pGoogle Scholar
  31. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U–Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci.  https://doi.org/10.1007/s00531-004-0413-8 Google Scholar
  32. Linnemann U, Nance RD, Kraft P, Zulauf G (Eds.) (2007) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Papers, vol 423.  https://doi.org/10.1130/978-0-8137-2423-2.vii
  33. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gartner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb–LA–ICP–MS detrital zircon ages. Lithos.  https://doi.org/10.1016/j.lithos.2011.01.010 Google Scholar
  34. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precam Res.  https://doi.org/10.1016/j.precamres.2013.08.007 Google Scholar
  35. Masse J-P, Tüysüz O, Fenerci-Masse M, Özer S, Sar B (2009) Stratigraphic organisation, spatial distribution, paleoenvironmental reconstruction, and demise of Lower Cretaceous (Barremian–lower Aptian) carbonate platforms of the Western Pontides (Black Sea region, Turkey). Cretaceous Res.  https://doi.org/10.1016/j.cretres.2009.05.004 Google Scholar
  36. Meinhold G, Kostopoulos D, Frei D, Himmerkus F, Reischmann T (2010) U–Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int J Earth Sci (Geol Rundsch).  https://doi.org/10.1007/s00531-009-0425-5 Google Scholar
  37. Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett.  https://doi.org/10.1016/j.epsl.2011.09.056 Google Scholar
  38. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res.  https://doi.org/10.1016/j.gr.2012.05.003 Google Scholar
  39. Moghadam HS, Stern RJ, Kimura J-I, Hirahara Y, Sebda R, Miyazaki T (2012) Hf–Nd isotope constraints on the origin of Dehshir Ophiolite, Central Iran. Island Arc.  https://doi.org/10.1111/j.1440-1738.2012.00815.x Google Scholar
  40. Moghadam HS, Li X-H, Griffin WL, Stern RJ, Thomsen TB, Meinhold G, Aharipour R, O’Reilly SY (2017) Early Paleozoic tectonic reconstruction of Iran: tales from detrital zircon geochronology. Lithos.  https://doi.org/10.1016/j.lithos.2016.09.008 Google Scholar
  41. Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011) Crustal evolution and recycling in the northern Arabian–Nubian Shield: new perspectives from zircon Lu–Hf and U–Pb systematics. Precam Res.  https://doi.org/10.1016/j.precamres.2011.01.004 Google Scholar
  42. Murphy JB, Nance RD (2008) The Pangea conundrum. Geology.  https://doi.org/10.1130/G24966A.1 Google Scholar
  43. Murphy JB, Strachan RA, Nance RD, Parker KD, Fowler MB (2000) Proto-Avalonia: a 1.2–1.0 Ga tectonothermal event and constraints for the evolution of Rodinia. Geology. https://doi.org/10.1130/0091-7613(2000)28<1071:PAGTEA>2.0.CO;2Google Scholar
  44. Murphy JB, Fernández-Suárez J, Keppie JD, Jeffries TE (2004a) Contiguous rather than discrete Paleozoic histories for the Avalon and Meguma terranes based on detrital zircon data. Geology.  https://doi.org/10.1130/G20351.1 Google Scholar
  45. Murphy JB, Fernández-Suárez J, Jeffries TE, Strachan RA (2004b) U–Pb (LA–ICP–MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along the northern Gondwanan margin. J Geol Soc Lond.  https://doi.org/10.1144/0016-764903-064 Google Scholar
  46. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004c) Neoproterozoic—Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci.  https://doi.org/10.1007/s00531-004-0412-9 Google Scholar
  47. Nance RD, Gutierrez-Alonso G, Keppie JD, Linnemann U, Murphy BJ, Quesada C, Strachan RA, Woodcock NH (2013) A brief history of the Rheic Ocean. Geosci Front.  https://doi.org/10.1016/j.gsf.2011.11.008 Google Scholar
  48. Natal’in B, Sunal G, Satir M, Toraman E (2012) Tectonics of the Strandja Massif, NW Turkey: history of a long-lived Arc at the Northern Margin of Palaeo-Tethys. Turk J Earth Sci.  https://doi.org/10.3906/yer-1006-29 Google Scholar
  49. Nikishin AM, Ziegler PA, Bolotov SN, Fokin P (2011) Late Palaeozoic to Cenozoic evolution of the Black Sea-Southern Eastern Europe Region: a view from the Russian Platform. Turk J Earth Sci.  https://doi.org/10.3906/yer-1005-22 Google Scholar
  50. Nikishin AM, Wannier M, Alekseev AS, Almendinger OA, Fokin PA, Gabdullin RR, Khudoley AK, Kopaevich LF, Mityukov AV, Petrov EI, Rubsova EV (2015a) Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. In: Sosson M, Stephenson RA, Adamia SA (ed) Tectonic Evolution of the Eastern Black Sea and Caucasus. Geological Society London Special Publications, vol 428.  https://doi.org/10.1144/SP428.1
  51. Nikishin AM, Okay A, Tuysuz O, Demirer A, Wannier M, Amelin N, Petrov E (2015b) The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Mar Pet Geol.  https://doi.org/10.1016/j.marpetgeo.2014.08.017 Google Scholar
  52. Nikishin AM, Okay A, Tuysuz O, Demirer A, Wannier M, Amelin N, Petrov E (2015c) The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Mar Pet Geol.  https://doi.org/10.1016/j.marpetgeo.2014.08.018 Google Scholar
  53. Okay AI, Nikishin AM (2015) Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int Geol Rev.  https://doi.org/10.1080/00206814.2015.1010609 Google Scholar
  54. Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horva TF, Seranne M (eds), The Mediterranean Basin: tertiary extension within the Alpine Orogen. Geological Society London Special Publications, vol 156.  https://doi.org/10.1144/GSL.SP.1999.156.01.22
  55. Okay AI, Tanzel I, Tüysüz O (2001) Obduction, subduction and collision as reflected in the Upper Cretaceous-Lower Eocene sedimentary record of Western Turkey. Geol Magz.  https://doi.org/10.1017/S0016756801005088 Google Scholar
  56. Okay AI, Satir M, Siebel W (2006) Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. In: Gee DG, Stephenson RA (ed), European lithosphere dynamics, Geological Society London, Memoirs, vol 32.  https://doi.org/10.1144/GSL.MEM.2006.032.01.23
  57. Okay AI, Bozkurt E, Satir M, Yigitbas E, Crowley QG, Shang CK (2008) Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. Tectonophysics.  https://doi.org/10.1016/j.tecto.2008.02.004 Google Scholar
  58. Okay AI, Zattin M, Cavazza W (2010) Apatite fission track data for the Miocene Arabia-Eurasia collision. Geology.  https://doi.org/10.1130/G30234.1 Google Scholar
  59. Okay N, Zack T, Okay AI, Barth M (2011) Sinistral transport along the Trans-European Suture Zone: Detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol Magz.  https://doi.org/10.1017/S0016756810000804 Google Scholar
  60. Okay AI, Sunal G, Sherlock S, Altiner D, Tuysuz O, Kylander-Clark ARC, Aygul M (2013) Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides, Turkey. Tectonics.  https://doi.org/10.1002/tect.20077 Google Scholar
  61. Okay AI, Sunal G, Tuysuz O, Sherlock S, Keskin M, Kylander-Clark ARC (2014) Low-pressure—high temperature metamorphism during extension in a Jurassic magmatic arc, Central Pontides, Turkey. J Metamorphic Geol.  https://doi.org/10.1111/jmg.12058 Google Scholar
  62. Okay AI, Altiner D, Kilic AM (2015) Triassic limestone, turbidite and serpentinite—Cimmeride orogeny in the Central Pontides. Geol Magz.  https://doi.org/10.1017/S0016756814000429 Google Scholar
  63. Okay AI, Altiner D, Sunal G Aygül M, Akdoğan R, Altinerand S, Simmons M (2018) Geology of evolution of the Central Pontides. In: Simmons MD, Tari GC, Okay AI (ed) Petroleum Geology of the Black Sea, Geological Society London Special Publications, vol 464.  https://doi.org/10.1144/SP464.3
  64. Peytcheva I, von Quadt A, Georgiev N, Ivanov Z, Heinrich CA, Frank M (2008) Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircons to unravel complex calcalkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria). Lithos.  https://doi.org/10.1016/j.lithos.2008.01.004 Google Scholar
  65. Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C (2009) Jurassic back-arc and hot-spot related series in the Armenian ophiolites—implications for the obduction process. Lithos.  https://doi.org/10.1016/j.lithos.2009.02.006 Google Scholar
  66. Saintot A, Stephenson RA, Stovba S, Brunet MF, Yegorova T, Starostenko V (2006) The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian-Early Palaeozoic to the Early Cretaceous. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics: London, Geological Society, Memoirs 32, pp 481–505.  https://doi.org/10.1144/GSL.MEM.2006.032.01.30
  67. Samson SD, Dlemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc Lond.  https://doi.org/10.1144/0016-764904-003 Google Scholar
  68. Sayit K, Goncuoglu MC, Furman T (2010) Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: geochemical implications from the Karakaya subduction/accretion Complex, Northern Turkey. Lithos.  https://doi.org/10.1016/j.lithos.2010.08.004 Google Scholar
  69. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci.  https://doi.org/10.1007/s00015-008-1247-3 Google Scholar
  70. Seghedi A (2012) Palaeozoic formations from Dobrugea and Pre-Dobrugea—an overview. Turk J Earth Sci.  https://doi.org/10.3906/yer-1101-20 Google Scholar
  71. Sen C (2007) Jurassic volcanism in the Eastern Pontides: is it rift related or subduction related? Turk J Earth Sci 16(4):523–539Google Scholar
  72. Shumlyanskyy L, Hawkesworth C, Dhuime B, Billstrom K, Claesson S, Storey C (2015) 207Pb/206Pb ages and Hf isotope composition of zircons from sedimentary rocks of the Ukrainian shield: crustal growth of the south-western part of East European craton from Archaean to Neoproterozoic. Precam Res.  https://doi.org/10.1016/j.precamres.2015.01.007 Google Scholar
  73. Solov’ev AV, Rogov MA (2010) First fission-track dating of zircons from Mesozoic complexes of the Crimea. Stratigr Geol Correlat.  https://doi.org/10.1134/S0869593810030068 Google Scholar
  74. Somin M (2011) Pre-Jurassic basement of the Greater Caucasus: brief overview. Turk J Earth Sci.  https://doi.org/10.3906/yer-1008-6 Google Scholar
  75. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett.  https://doi.org/10.1016/S0012-821X(01)00588-X Google Scholar
  76. Stampfli G, Kozur HW (2006) Europe from Variscan to Alpine cycles. In: Gee DG, Stepherson R (eds), European Lithosphere Dynamics. Geological Society London, Memoirs, 32.  https://doi.org/10.1144/GSL.MEM.2006.032.01.04
  77. Stampfli GM, Von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martinez CJR, Hatcher Jr RD, Arenas R, Diaz Garcia F (eds) Variscan-Appalachian dynamics: The building of the Late Palaeozoic basement. Geological Society of America Special Papers, 364.  https://doi.org/10.1130/0-8137-2364-7.263
  78. Stampfli GM, Hochard C, Verard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics.  https://doi.org/10.1016/j.tecto.2013.02.037 Google Scholar
  79. Starostenko V, Janik T, Yegorova T, Farfuliak L et al (2015) Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula. Geophys J Int.  https://doi.org/10.1093/gji/ggv018 Google Scholar
  80. Strachan RA, Linneman U, Jeffries T, Drost K, Ulrich J (2014) Armorican provenance for melange deposits below the Lizard ophiolite (Cornwall, UK)—evidence for Devonian obduction of Cadomian and Lower Palaeozoic crust onto the southrn margin of Avalonia. Int J Earth Sci.  https://doi.org/10.1007/s00531-013-0961-x Google Scholar
  81. Sunal G, Satir M, Natal’in B, Toraman E (2008) Paleotectonic position of the Strandja Massif and surrounding continental blocks based on zircon Pb–Pb age studies. Int Geol Rev.  https://doi.org/10.2747/0020-6814.50.6.519 Google Scholar
  82. Teipel U, Eichhorn R, Loth G, Rohrmuller J, Holl R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci.  https://doi.org/10.1007/s00531-004-0419-2 Google Scholar
  83. Topuz G, Celik OF, Sengor AMC, Altintas IE, Zack T, Rolland Y, Barth M (2013a) Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahiye ophiolite, and relation to the Balkan ophiolites. Am J Sci.  https://doi.org/10.2475/10.2013.04 Google Scholar
  84. Topuz G, Gocmengil G, Rolland Y, Celik OF, Zack T, Schmitt AK (2013b) Jurassic accretionary complex and ophiolite from northeast Turkey: no evidence for the Cimmerian continental ribbon. Geology.  https://doi.org/10.1130/G33577.1 Google Scholar
  85. Ustaomer PA, Ustaomer T, Gerdes A, Zulauf G (2011) Detrital zircon ages from Ordovician quartzites of the Istanbul exotic terrane (NW Turkey): evidence for Amazonian affinity. Int J Earth Sci.  https://doi.org/10.1007/s00531-010-0539-9 Google Scholar
  86. Ustaomer PA, Ustaomer T, Robertson AHF (2012) Ion Probe U–Pb dating of the Central Sakarya basement: a peri-Gondwana terrane intruded by late Lower Carboniferous subduction/collision related granitic rocks. Turk J Earth Sci.  https://doi.org/10.3906/yer-1103-1 Google Scholar
  87. Ustaomer T, Robertson AHF, Ustaomer PA, Gerdes A, Peytcheva I (2013) Constraints on Variscan and Cimmerian magmatism and metamorphism in the Pontides (Yusufeli -Artvin area), NE Turkey from U–Pb dating and granite geochemistry. In: Robertson AHF, Parlak O, Unlugenc UC (Eds) Geol. development of Anatolia and the easternmost Mediterranean region. Geological Society London Special Publications, vol 372.  https://doi.org/10.1144/SP372.13
  88. Ustaomer PA, Ustaomer T, Robertson AHF, Gerdes A (2016) Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian-Triassic Palaeotethyan Karakaya Complex, NW Turkey. Int J Earth Sci 10:100.  https://doi.org/10.1007/s00531-015-1225-8 Google Scholar
  89. von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfl GM (2013) Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. GSA Bull.  https://doi.org/10.1130/B30654.1 Google Scholar
  90. Yılmaz A, Adamia S, Yılmaz H (2014) Comparisons of the suture zones along a geotraverse from the Scythian Platform to the Arabian Platform. Geosci Front 5(6):855–875.  https://doi.org/10.1016/j.gsf.2013.10.004 CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of ScienceMoscowRussia
  2. 2.ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyAustralia
  3. 3.Gubkin Russian State University of Oil and GasMoscowRussia
  4. 4.Schmidt Institute of Physics of the EarthRussian Academy of ScienceMoscowRussia

Personalised recommendations