Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 6, pp 2097–2111 | Cite as

Late Cretaceous exhumation and uplift of the Harz Mountains, Germany: a multi-method thermochronological approach

  • Hilmar von EynattenEmail author
  • István Dunkl
  • Manfred Brix
  • Veit-Enno Hoffmann
  • Matthias Raab
  • Stuart Nigel Thomson
  • Barry Kohn
Original Paper
  • 61 Downloads

Abstract

The Harz Mountains represent one of the most prominent surface expressions of Late Cretaceous intraplate shortening in Central Europe. We present a comprehensive low-temperature thermochronological data set (zircon and apatite, fission track and [U–Th]/He) covering the exhumed Paleozoic basement of the Harz Mountains and the adjacent Kyffhäuser block, as well as Lower Triassic sedimentary rocks of the western and southern rim of the Harz Mountains. Integration of results with sedimentological data from the syntectonic Late Cretaceous Subhercynian Basin allows for a detailed reconstruction of the timing of uplift and erosion of the Harz Mountains. The data reveal that (i) tectonic reorganization and initial exhumation started at around 90 Ma, (ii) uplift and emergence caused erosion of the Mesozoic sedimentary cover between 86–85 Ma and 83–82 Ma, and (iii) erosion of at least 3–4 km of underlying Paleozoic rocks followed and continued into the Paleogene. The thickness of removed overburden amounts to at least 6 km, and most erosion occurred in Santonian to Campanian time at minimum rates of ~ 0.5 km/Myr. The southwestern rim of the Harz has exhumed slower over a longer period of time, and may record a phase of Late Cretaceous, syntectonic sediment accumulation.

Keywords

Thermochronology Fission track (U–Th)/He Late Cretaceous Intraplate stress Subhercynian Cretaceous Basin Central Europe 

Notes

Acknowledgements

We thank Björn Baresel, Eike-Matthias Bultmann, Katrina Kremer, Florian Wetzel and Jörn-Frederic Wotzlaw for supporting the (U–Th)/He analysis at University of Göttingen, Frank Hansen for mineral separation at Ruhr University Bochum, and Jonas Kley and Thomas Voigt for valuable discussions. Thorough reviews by Martin Danišík and an anonymous reviewer helped to improve the final manuscript.

Supplementary material

531_2019_1751_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 89 kb)

References

  1. Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Int J Earth Sci 80:669–690Google Scholar
  2. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223CrossRefGoogle Scholar
  3. Danišík M, Migoń P, Kuhlemann J, Evans NJ, Dunkl I, Frisch W (2010) Thermochronological constraints on the long-term erosional history of the Karkonosze Mts, Central Europe. Geomorphology 117:78–89CrossRefGoogle Scholar
  4. Danišík M, Štěpančíková P, Evans NJ (2012) Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Tectonics 31:TC2003.  https://doi.org/10.1029/2011tc003012 Google Scholar
  5. Danišík M, McInnes BIA, Kirkland CL, McDonald BJ, Evans NJ, Becker T (2017) Seeing is believing: visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci Adv 3:e1601121CrossRefGoogle Scholar
  6. DEKORP-Basin Research Group (1999) Deep crustal structure of the northeast German Basin: new DEKORP BASIN 96 deep-profiling results. Geology 27:55–58CrossRefGoogle Scholar
  7. Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94CrossRefGoogle Scholar
  8. Dumitru TA (1993) A new computer automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580CrossRefGoogle Scholar
  9. Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a Windows program for data analysis. Geochimica Cosmochimica Acta 66/15A, 201; http://www.sediment.uni-goettingen.de/staff/dunkl/software/popshare.html. Accessed 22 Jan 2019
  10. Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2903–2914CrossRefGoogle Scholar
  11. Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229CrossRefGoogle Scholar
  12. Fischer C, Dunkl I, von Eynatten H, Wijbrans JR, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol Mag 149:827–840CrossRefGoogle Scholar
  13. Flick H (1986) The Hercynian Mountains—a postorogenic overthrusted massif? Naturwissenschaften 73:670–671CrossRefGoogle Scholar
  14. Franz L, Schuster AK, Strauss KW (1997) Basement Evolution in the Rhenohercynian Segment: discontinuous Exumation History of the Eckergneis Complex (Harz Mountains, Germany). Chem Erde 57:105–135Google Scholar
  15. Franzke HJ, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62Google Scholar
  16. Franzke HJ, Müller R, Voigt T, von Eynatten H (2007) Paleo-Stress Paths in the Harz Mountains and surrounding areas (Germany) between Triassic and Upper Cretaceous. Z Geol Wiss 35:141–156Google Scholar
  17. Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:471–471CrossRefGoogle Scholar
  18. Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:459–470CrossRefGoogle Scholar
  19. Gleadow AJW (1981) Fission track dating methods: what are the real alternatives? Nucl Tracks 5:3–14CrossRefGoogle Scholar
  20. Gleadow AJW, Hurford AJ, Quaife RD (1976) Fission track dating of zircon: improved etching techniques. Earth Planet Res Lett 33:273–276CrossRefGoogle Scholar
  21. Gleadow AJW, Duddy IR, Lovering JF (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Aust Petrol Explor Assoc J 23:93–102Google Scholar
  22. Gleadow AJW, Duddy IR, Green PF, Hegarty KA (1986) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78:245–254CrossRefGoogle Scholar
  23. Green PF (1981) ‘Track-in track’ length measurements in annealed apatites. Nucl Tracks 5:12–18Google Scholar
  24. Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isot Geosci Sect 79:155–182CrossRefGoogle Scholar
  25. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313:145–198CrossRefGoogle Scholar
  26. Hejl E, Coyle D, Lal N, van den Haute P, Wagner GA (1997) Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications. Int J Earth Sci 86:210–219Google Scholar
  27. Hourigan JK, Reiners PW, Brandon MT (2005) U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta 69(13):3349–3365Google Scholar
  28. Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chem Geol 80:171–178Google Scholar
  29. Hurford AJ, Green PF (1983) The age calibration of fission-track dating. Isot Geosci 1:285–317Google Scholar
  30. Jacobs J, Breitkreuz C (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. Int J Earth Sci 92:165–172CrossRefGoogle Scholar
  31. Johnson JE, Flowers RM, Baird GB, Mahan KH (2017) “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: high-damage zircon as a low-temperature (< 50°C) thermochronometer. Earth Planet Sci Lett 466:80–90CrossRefGoogle Scholar
  32. Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: new constraints from fission-track analysis. Int J Earth Sci 94:180–192CrossRefGoogle Scholar
  33. Ketcham R (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRefGoogle Scholar
  34. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved modeling of fission track annealing in apatite. Am Mineral 92:799–810CrossRefGoogle Scholar
  35. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36:839–842CrossRefGoogle Scholar
  36. Kley J, Franzke HJ, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H (2008) Strain and Stress. In: Littke R, Bayer U, Gajewski D, Nelskamp (eds) Dynamics of complex intracontinental basins—the Central European Basin system. Springer, Berlin, pp 97–124Google Scholar
  37. Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth J Geosci 82:367–382Google Scholar
  38. König W, Köthe A, Ritz I (2011) Die marine Beeinflussung der Subherzynen Senke und der Mittelharzhochfläche im Oligozän—Biostratigraphische und sedimentpetrographische Analysen tertiärer Sandvorkommen. Z Geol Wiss 39:387–431Google Scholar
  39. Köppen A, Carter A (2000) Constraints on provenance of the central European Triassic using detrital zircon fission track data. Palaeogeogr Palaeoclimatol Palaeoecol 161:193–204CrossRefGoogle Scholar
  40. Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins—the Central European Basin system. Springer, Berlin, p 519CrossRefGoogle Scholar
  41. Łuszczak K, Persano C, Braun J, Stuart FM (2017) How crustal thermal properties influence the amount of denudation derived from low-temperature thermochronometry. Geology 45:779–782CrossRefGoogle Scholar
  42. Marotta AM, Bayer U, Scheck M, Thybo H (2001) The stress field below the NE German basin: Effects induced by the Alpine collision. Geophys J Int 144:F8–F12.  https://doi.org/10.1046/j.1365-246x.2001.00373.x
  43. McCann T (ed) (2008) The geology of central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, LondonGoogle Scholar
  44. Migoń P, Danišík M (2012) Erosional history of the Karkonosze Granite Massif—constraints from adjacent sedimentary basins and thermochronology. Geol Q 56:441–456CrossRefGoogle Scholar
  45. Naylor M, Sinclair HD (2008) Pro- vs. retro-foreland basins. Basin Res 20:285–303Google Scholar
  46. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: he diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887CrossRefGoogle Scholar
  47. Stackebrandt W, Franzke HJ (1989) Alpidic reactivation of the Variscan consolidated lithosphere: the activity of some fracture zones in central Europe. Z Geol Wiss 7:699–712Google Scholar
  48. Tanner DC, Krawczyk CM (2017) Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust. Int J Earth Sci 106:2963–2972CrossRefGoogle Scholar
  49. Tatzel M, Dunkl I, von Eynatten H (2017) Provenance of Paleo-Rhine sediments from zircon thermochronology, geochemistry, U/Pb dating, and heavy mineral assemblages. Basin Res 29(suppl 1):396–417CrossRefGoogle Scholar
  50. Thomson SN, Zeh A (2000) Fission-track thermochronology of the Ruhla Crystalline Complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324:17–35CrossRefGoogle Scholar
  51. Thomson SN, Brix MR, Carter A (1997) Late Cretaceous denudation of the Harz Massif assessed by apatite fission-track analysis. Schr Dtsch Geol Ges 2:115 (abstract) Google Scholar
  52. Voigt T, von Eynatten H, Franzke HJ (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Pol 54:765–765Google Scholar
  53. Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Fazies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dtsch Ges Geowiss 157:203–244Google Scholar
  54. Voigt T, von Eynatten H, Kley J (2009) Kommentar zu “Nördliche Harzrandstörung: diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik”. Z Dtsch Ges Geowiss 160(1):93–99Google Scholar
  55. von Eynatten H, Voigt T, Meier A, Franzke HJ, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci 97(6):1315–1330CrossRefGoogle Scholar
  56. Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137(1–4):389–420CrossRefGoogle Scholar
  57. Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum Mij. BV and Geological Society of London (London), pp 1–239Google Scholar
  58. Ziegler PA, Cloetingh SAPL, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  • Hilmar von Eynatten
    • 1
    Email author
  • István Dunkl
    • 1
  • Manfred Brix
    • 2
  • Veit-Enno Hoffmann
    • 1
  • Matthias Raab
    • 3
  • Stuart Nigel Thomson
    • 4
  • Barry Kohn
    • 3
  1. 1.Geoscience Center, Department of Sedimentology and Environmental GeologyUniversity of GöttingenGöttingenGermany
  2. 2.Institute of Geology, Mineralogy, and Geophysics, Faculty of GeosciencesRuhr University BochumBochumGermany
  3. 3.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  4. 4.Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations