Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 6, pp 2071–2095 | Cite as

The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: the example of the northwestern Adriatic margin exposed in the Central Alps

  • Charlotte RibesEmail author
  • Gianreto Manatschal
  • Jean-François Ghienne
  • Garry D. Karner
  • Christopher A. Johnson
  • Patricio H. Figueredo
  • Nicolò Incerpi
  • Marie-Eva Epin
Original Paper
  • 73 Downloads

Abstract

To understand the overall spatial and temporal evolution and resulting sedimentary stacking patterns within an evolving hyper-extended rift system, we investigated the Austroalpine and Upper Penninic nappes in the Central Alps. These nappes preserve pristine remnants of the northwestern Adriatic rifted margin showing the transition from stretched and hyper-extended continental crust to exhumed mantle of a sediment-starved, magma-poor rifted margin. Our paper reviews sedimentological and structural data that enable us to determine a general chrono-tectono-stratigraphic framework for the syn-rift succession of the margin. The detailed study of the facies distribution within the different rift domains, including proximal, necking, hyper-extended, and exhumed mantle domains, allow us to identify syn- and post-tectonic sedimentary packages. The correlation of these sedimentary packages between the rift domains is based on the identification of basin-wide correlative stratigraphic intervals linked to global or basin-wide Jurassic events: (1) the Early Toarcian Oceanic Anoxic Event; (2) an Early Bajocian bio-siliceous event; and (3) the onset of Tithonian carbonate-dominated sedimentation. Using these timelines, we could recognize the oceanward propagation of the syn-tectonic package from the proximal to the exhumed mantle domains as a function of time. A key observation is that syn-tectonic packages can be compartmentalized into four tectonic system tracts across the margin. Each system tract and their associated bounding surfaces record the stratigraphic evolution and change in deformation mode related to distinct and successive syn-rift phases that correspond to the stretching (~ 10My), necking (~ 6My), hyper-extension (~ 15My), and mantle exhumation (~ 18My) phases.

Keywords

Syn-rift Tectonic system tracts Hyper-extended rifted margin Alpine Tethys margin 

Notes

Acknowledgements

This research was supported by ExxonMobil as part of the CEIBA project (Center of Excellence In Basin Analysis). The authors acknowledge the constructive and helpful reviews of Jakob Skogseid, Philip Ball and an anonymous reviewer and comments by the Topic Editor Nikolaus Froitzheim and the Editor Wolf-Christian Dullo that helped us to improve the paper. J. Tugend is thanked for help in the field and ensuing discussions. G. Mohn, E. Masini are thanked for discussions.

Compliance with ethical standards

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Alves TM, Cupkovic T (2018) Footwall degradation styles and associated sedimentary facies distribution in SE Crete: insights into tilt-block extensional basins on continental margins. Sediment Geol 367:1–19.  https://doi.org/10.1016/j.sedgeo.2018.02.001 Google Scholar
  2. Bailey T, Rosenthal Y, McArthur J, Van de Schootbrugge B, Thirlwall M (2003) Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet Sci Lett 212:307–320Google Scholar
  3. Banakar VK, Hein JR (2000) Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Mar Geol 162:529–540Google Scholar
  4. Bartolini A, Cecca F (1999) 20 my hiatus in the Jurassic of Umbria-Marche Apennines (Italy): carbonate crisis due to eutrophication. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth Planet Sci 329:587–595Google Scholar
  5. Bartolini A, Baumgartner P, Hunziker J (1996) Middle and Late Jurassic carbon stable-isotope stratigraphy and radiolarite sedimentation of the Umbria-Marche Basin (Central Italy). Eclogae Geologicae Helvetiae 89:831–879Google Scholar
  6. Bartolini A, Baumgartner P, Guex J (1999) Middle and Late Jurassic radiolarian palaeoecology versus carbon-isotope stratigraphy Palaeogeography. Palaeoclimatol Palaeoecol 145:43–60Google Scholar
  7. Baumgartner PO (2013) Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60:292–318Google Scholar
  8. Bernoulli D, Weissert H (1985) Sedimentary fabrics in Alpine ophicalcites, south Pennine Arosa zone, Switzerland. Geology 13:755–758Google Scholar
  9. Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sediment Geol 86:53–76.  https://doi.org/10.1016/0037-0738(93)90133-P Google Scholar
  10. Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H (2001) Radiolarite ages in Alpine-Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys-Atlantic connection GSA. Bulletin 113:129–143.  https://doi.org/10.1130/0016-7606(2001)113%3c0129:RAIAMO%3e2.0.CO;2 Google Scholar
  11. Bornemann A, Aschwer U, Mutterlose J (2003) The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary Palaeogeography. Palaeoclimatol Palaeoecol 199:187–228.  https://doi.org/10.1016/S0031-0182(03)00507-8 Google Scholar
  12. Brune S, Heine C, Clift PD, Pérez-Gussinyé M (2017) Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, central South Atlantic, and South China sea. Mar Pet Geol 79:257–281.  https://doi.org/10.1016/j.marpetgeo.2016.10.018 Google Scholar
  13. Cecca F, Garin BM, Marchand D, Lathuiliere B, Bartolini A (2005) Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic) Palaeogeography. Palaeoclimatol Palaeoecol 222:10–32Google Scholar
  14. Chenin P, Manatschal G, Lavier LL, Erratt D (2015) Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. J Geol Soc 172:711–720Google Scholar
  15. Chiari M, Di Stefano P, Parisi G (2008) New stratigraphical data on the Middle-Late Jurassic biosiliceous sediments from the Sicanian basin, Western Sicily (Italy) Swiss. J Geosci 101:415–429Google Scholar
  16. Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Saint Blanquat M (2012) Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull de la Société géologique de Fr 183:443–459Google Scholar
  17. Conti P, Manatschal G, Pfister M (1994) Synrift sedimentation, Jurassic and Alpine tectonics in the central Ortler nappe (Eastern Alps, Italy). Eclogae Geologicae Helvetiae 87:63–90Google Scholar
  18. De Graciansky PC, Roberts DG, Tricart P (2011) The Western Alps, from rift to passive margin to orogenic belt: an integrated geoscience overview. Developments in earth surface processes, vol 14. Elsevier, AmsterdamGoogle Scholar
  19. Decarlis A, Dallagiovanna G, Lualdi A, Maino M, Seno S (2013) Stratigraphic evolution in the Ligurian Alps between Variscan heritages and the Alpine Tethys opening: a review. Earth Sci Rev 125:43–68Google Scholar
  20. Decarlis A, Manatschal G, Haupert I, Masini E (2015) The tectono-stratigraphic evolution of distal, hyper-extended magma-poor conjugate rifted margins: examples from the Alpine Tethys and Newfoundland-Iberia. Mar Pet Geol 68:54–72Google Scholar
  21. Decarlis A, Gillard M, Tribuzio R, Epin M, Manatschal G (2018) Breaking up continents at magma-poor rifted margins: a seismic vs. outcrop perspective. J Geol Soc.  https://doi.org/10.1144/jgs2018-041 Google Scholar
  22. Desmurs L, Manatschal G, Bernoulli D (2001) The Steinmann Trinity revisited: mantle exhumation and magmatism along an ocean-continent transition: the Platta nappe, eastern Switzerland. Geol Soc Lond Spec Publ 187:235–266.  https://doi.org/10.1144/GSL.SP.2001.187.01.12 Google Scholar
  23. Desmurs L, Müntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland. Contrib Mineral Pet 144:365–382Google Scholar
  24. Di Stefano P, Mindszenty A (2000) Fe–Mn-encrusted “Kamenitza” and associated features in the Jurassic of Monte Kumeta (Sicily): subaerial and/or submarine dissolution? Sediment Geol 132:37–68Google Scholar
  25. Dietrich V (1970) Die Stratigraphie der Platta-Decke. Eclogae Geologicae Helvetiae 63:631–671Google Scholar
  26. Dommergues J-L, Meister C, Manatschal G (2012) Early Jurassic ammonites from Bivio (Lower Austroalpine unit) and Ardez (Middle Penninic unit) areas: A biostratigraphic tool to date the rifting in the Eastern Swiss Alps. Revue de Paléobiologie 31:43–52Google Scholar
  27. Dössegger R (1976) Austroalpine verrucano of Switzerland. The continental permian in central, west, and south Europe. Springer, Berlin, pp 123–136Google Scholar
  28. Driscoll NW, Hogg JR, Christie-Blick N, Karner GD (1995) Extensional tectonics in the Jeanne d’Arc Basin, offshore Newfoundland: implications for the timing of break-up between Grand Banks and Iberia. Geol Soc Lond Spec Publ 90:1–28Google Scholar
  29. Duretz T, Petri B, Mohn G, Schmalholz S, Schenker F, Müntener O (2016) The importance of structural softening for the evolution and architecture of passive margins. Sci Rep 6:38704Google Scholar
  30. Eberli GP (1985) Die jurassischen Sedimente in den ostalpinen Decken Graubündens. Dissertation. ETH Zurich, ZurichGoogle Scholar
  31. Eberli GP (1987) Carbonate turbidite sequences deposited in rift-basins of the Jurassic Tethys Ocean (eastern Alps, Switzerland). Sedimentology 34:363–388Google Scholar
  32. Eberli G (1988) The evolution of the southern continental margin of the Jurassic Tethys Ocen as recorded in the Allgäu Formation of the Austroalpine Nappes of Graubünden (Switzerland). Eclogae Geologicae Helvetiae 81:175–214Google Scholar
  33. Ebli O, Vető I, Lobitzer H, Sajgó C, Demény A, Hetényi M (1998) Primary productivity and early diagenesis in the Toarcian Tethys on the example of the Mn-rich black shales of the Sachrang formation, Northern Calcareous Alps. Org Geochem 29:1635–1647Google Scholar
  34. Epin M-E (2017) Evolution morpho-tectonique et magmatique polyphasée des marges ultra-distales pauvres en magma: la transition océan-continent fossile de l’Err et de la Platta (SE Suisse) et comparaison avec des analogues actuels. Phd. Université de Strasbourg, StrasbourgGoogle Scholar
  35. Epin M-E, Manatschal G (2018) Three-dimensional architecture, structural evolution and role of inheritance controlling detachment faulting at a hyperextended distal margin: The example of the Err detachment system (SE Switzerland). Tectonics.  https://doi.org/10.1029/2018tc005125 Google Scholar
  36. Epin M-E, Manatschal G, Amann M (2017) Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland) Swiss. J Geosci 110:419–438Google Scholar
  37. Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52:85–106Google Scholar
  38. Falvey DA (1974) The development of continental margins in plate tectonic theory. APPEA J 14:95–106Google Scholar
  39. Finger W (1978) Die zone von Samaden (unterostalpine Decken, Graubünden) und ihre jurassischen Brekzien. University Zurich, ZurichGoogle Scholar
  40. Franke D (2013) Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Mar Pet Geol 43:63–87.  https://doi.org/10.1016/j.marpetgeo.2012.11.003 Google Scholar
  41. Froitzheim N (1988) Synsedimentary and synorogenic normal faults within a thrust sheet of the Eastern Alps (Ortler zone, Graubünden, Switzerland). Eclogae Geologicae Helvetiae 81:593–610Google Scholar
  42. Froitzheim N, Eberli GP (1990) Extensional detachment faulting in the evolution of a Tethys passive continental margin. Eastern Alps, Switzerland Geological Society of America Bulletin 102:1297–1308.  https://doi.org/10.1130/0016-7606(1990)102%3c1297:EDFITE%3e2.3.CO;2 Google Scholar
  43. Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133Google Scholar
  44. Früh-Green GL, Weissert H, Bernoulli D (1990) A multiple fluid history recorded in Alpine ophiolites. J Geol Soc 147:959–970Google Scholar
  45. Furrer H (1985) Field Workshop on Triassic and Jurassic Sediments in the Eastern Alps of Switzerland: 25th.-29th. August 1985: Guide Book. Geologisches Institut ETH-Zürich, ZurichGoogle Scholar
  46. Furrer H (1993) Stratigraphie und facies der Trias/Jura-grenzschichten in den oberostalpinen Decken graubündens. Dissertation. Universität Zürich, ZurichGoogle Scholar
  47. Gillard M, Autin J, Manatschal G, Sauter D, Munschy M, Schaming M (2015) Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: constraints from seismic observations. Tectonics 34:753–783Google Scholar
  48. Gillard M, Manatschal G, Autin J (2016) How can asymmetric detachment faults generate symmetric Ocean Continent Transitions? Terra Nova 28:27–34Google Scholar
  49. Handy M (1996) The transition from passive to active margin tectonics: a case study from the zone of Samedan (eastern Switzerland). Geologische Rundschau 85:832–851Google Scholar
  50. Handy M, Herwegh M, Regli C (1993) Tektonische Entwicklung der westlichen Zone von Samedan (Oberhalbstein, Graubünden, Schweiz). Eclogae Geologicae Helvetiae 86:785–817Google Scholar
  51. Haupert I, Manatschal G, Decarlis A, Unternehr P (2016) Upper-plate magma-poor rifted margins: stratigraphic architecture and structural evolution. Mar Pet Geol 69:241–261.  https://doi.org/10.1016/j.marpetgeo.2015.10.020 Google Scholar
  52. Huang C, Hesselbo SP (2014) Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res 25:1348–1356Google Scholar
  53. Incerpi N, Martire L, Manatschal G, Bernasconi SM (2017) Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland) Swiss. J Geosci 110:439–456Google Scholar
  54. Jackson C, Gawthorpe R, Leppard C, Sharp I (2006) Rift-initiation development of normal fault blocks: insights from the Hammam Faraun fault block Suez Rift, Egypt. J Geol Soc 163:165–183Google Scholar
  55. Jacobshagen V (1965) Die Allgfiuschichten (Jura-Fleckenmergel) zwischen. Wettersteingebirge und Rhein 108:1–114Google Scholar
  56. Jacquin T, de Graciansky P-C (1998) Major transgressive/regressive cycles: the stratigraphic signature of European basin development Society for. Sediment Geol 60:15–29Google Scholar
  57. Jammes S, Manatschal G, Lavier L (2010) Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bull 94:957–975Google Scholar
  58. Jenkyns HC (1970) Fossil manganese nodules from the west Sicilian Jurassic Eclogae. Geol Helv 63:741–774Google Scholar
  59. Jenkyns H (1988) The early Toarcian (Jurassic) anoxic event-stratigraphic, sedimentary, and geochemical evidence. Am J Sci 288:101–151Google Scholar
  60. Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst.  https://doi.org/10.1029/2009gc002788 Google Scholar
  61. Jenkyns HC, Clayton CJ (1986) Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33:87–106Google Scholar
  62. Jenkyns HC, Sarti M, Masetti D, Howarth M (1985) Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, Southern Alps, Italy. Eclogae Geologicae Helvetiae 78:299–311Google Scholar
  63. Lagabrielle Y, Labaume P, de Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29:TC4012Google Scholar
  64. Lavier LL, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328.  https://doi.org/10.1038/nature04608 Google Scholar
  65. Leeder M, Gawthorpe R (1987) Sedimentary models for extensional tilt-block/half-graben basins. Geol Soc Lond Spec Publ 28:139–152Google Scholar
  66. Lemoine M, Trümpy R (1987) Pre-oceanic rifting in the Alps. Tectonophysics 133:305–320Google Scholar
  67. Lemoine M et al (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Mar Pet Geol 3:179–199Google Scholar
  68. Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic imodel. Geology 15:622–625Google Scholar
  69. Manatschal G (1999) Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). J Struct Geol 21:777–793Google Scholar
  70. Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93:432–466Google Scholar
  71. Manatschal G, Bernoulli D (1999) Architecture and tectonic evolution of nonvolcanic margins: present-day Galicia and ancient Adria. Tectonics 18:1099–1119Google Scholar
  72. Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19Google Scholar
  73. Manatschal G, Nievergelt P (1997) A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geologicae Helvetiae 90:3–28Google Scholar
  74. Martins-Neto M, Catuneanu O (2010) Rift sequence stratigraphy. Mar Pet Geol 27:247–253.  https://doi.org/10.1016/j.marpetgeo.2009.08.001 Google Scholar
  75. Masini E, Manatschal G, Mohn G, Ghienne J-F, Lafont F (2011) The tectono-sedimentary evolution of a supra-detachment rift basin at a deep-water magma-poor rifted margin: the example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Res 23:652–677.  https://doi.org/10.1111/j.1365-2117.2011.00509.x Google Scholar
  76. Masini E, Manatschal G, Mohn G, Unternehr P (2012) Anatomy and tectono-sedimentary evolution of a rift-related detachment system: the example of the Err detachment (central Alps, SE Switzerland). Geol Soc Am Bull 124:1535–1551.  https://doi.org/10.1130/b30557.1 Google Scholar
  77. Masini E, Manatschal G, Mohn G (2013) The Alpine Tethys rifted margins: reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60:174–196.  https://doi.org/10.1111/sed.12017 Google Scholar
  78. Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M (2014) The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 103:1569–1596.  https://doi.org/10.1007/s00531-014-1023-8 Google Scholar
  79. McArthur J, Algeo T, Van de Schootbrugge B, Li Q, Howarth R (2008) Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23:PA4217Google Scholar
  80. Meier A (2003) The periadriatic fault system in Valtellina (N-Italy) and the evolution of the southwestern segment of the Eastern Alps. PhD thesis. ETH Zurich, ZurichGoogle Scholar
  81. Mohn G, Manatschal G, Müntener O, Beltrando M, Masini E (2010) Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int J Earth Sci 99:75–101.  https://doi.org/10.1007/s00531-010-0566-6 Google Scholar
  82. Mohn G, Manatschal G, Masini E, Müntener O (2011) Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). Int J Earth Sci 100:937–961.  https://doi.org/10.1007/s00531-010-0630-2 Google Scholar
  83. Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N (2012) Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31:TC1012Google Scholar
  84. Mohn G, Karner GD, Manatschal G, Johnson CA (2015) Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geol Soc Lond Spec Publ 413:53–89.  https://doi.org/10.1144/SP413.9 Google Scholar
  85. Morettini E, Santantonio M, Bartolini A, Cecca F, Baumgartner P, Hunziker J (2002) Carbon isotope stratigraphy and carbonate production during the Early-Middle Jurassic: examples from the Umbria–Marche–Sabina Apennines (central Italy) Palaeogeography. Palaeoclimatol Palaeoecol 184:251–273Google Scholar
  86. Müntener O, Manatschal G, Desmurs L, Pettke T (2009) Plagioclase peridotites in ocean–continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294Google Scholar
  87. Muttoni G, Erba E, Kent DV, Bachtadse V (2005) Mesozoic Alpine facies deposition as a result of past latitudinal plate motion. Nature 434:59Google Scholar
  88. Naef MH (1987) Ein Beitrag zur Stratigraphie der Trias-Serien im Unterostalpin Graubündens. ETH Zurich, ZurichGoogle Scholar
  89. Nonn C, Leroy S, Khanbari K, Ahmed A (2017) Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: narrowness and asymmetry in oblique rifting context. Tectonophysics 721:322–348.  https://doi.org/10.1016/j.tecto.2017.09.024 Google Scholar
  90. Ogg JG, Ogg G, Gradstein FM (2016) A concise geologic time scale: 2016. Elsevier, AmsterdamGoogle Scholar
  91. Pallini G, Elmi S, Gasparini F (2005) Late Toarcian-Late Aalenian ammonites assemblage from Mt. Magaggiaro (western Sicily, Italy) Geol Rom 37:1-66Google Scholar
  92. Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int J Earth Sci 98:1581–1597.  https://doi.org/10.1007/s00531-008-0337-9 Google Scholar
  93. Petri B, Mohn G, Skrzypek E, Mateeva T, Galster F, Manatschal G (2017) U-Pb geochronology of the Sondalo gabbroic complex (Central Alps) and its position within the Permian post-Variscan extension. Int J Earth Sci 106:2873–2893Google Scholar
  94. Petri B et al (2018) Mechanical anisotropies and mechanisms of mafic magma ascent in the middle continental crust: the Sondalo magmatic system (N Italy). GSA Bull 130:331–352Google Scholar
  95. Picazo S, Manatschal G, Cannat M, Andréani M (2013) Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: the Totalp unit in SE Switzerland. Lithos 175:255–271Google Scholar
  96. Picazo S, Müntener O, Manatschal G, Bauville A, Karner G, Johnson C (2016) Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: evidence for mantle modification during an extensional cycle. Lithos 266:233–263Google Scholar
  97. Pinto VHG, Manatschal G, Karpoff AM, Viana A (2015) Tracing mantle-reacted fluids in magma-poor rifted margins: the example of Alpine Tethyan rifted margins Geochemistry. Geophys Geosyst 16:3271–3308Google Scholar
  98. Principi G et al (2004) The pre-orogenic volcano-sedimentary covers of the Western Tethys oceanic basin: a review. Ofioliti 29:177–211Google Scholar
  99. Prosser S (1993) Rift-related linked depositional systems and their seismic expression. Geol Soc Lond Spec Publ 71:35–66Google Scholar
  100. Ranero CR, Pérez-Gussinyé M (2010) Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature 468:294.  https://doi.org/10.1038/nature09520 Google Scholar
  101. Rantitsch G, Melcher F, Meisel T, Rainer T (2003) Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits. Mineral Petrol 77:109–127Google Scholar
  102. Reston TJ, McDermott KG (2011) Successive detachment faults and mantle unroofing at magma-poor rifted margins. Geology 39:1071–1074Google Scholar
  103. Rowan M (2014) Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res 26:154–182Google Scholar
  104. Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, Masetti D (2009) Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56:1307–1328Google Scholar
  105. Sauter D et al (2013) Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat Geosci 6:314Google Scholar
  106. Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Frank M, Bernoulli D (2002) The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14:156–162Google Scholar
  107. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117.  https://doi.org/10.1007/s00015-004-1113-x Google Scholar
  108. Schüpbach M (1973) Comparison of Slope and Basinal Sediments of a Marginal Cratonic Basin (Pedregosa Basin, New Mexico) and a Marginal Geosynclinal Basin (Southern Border of Piemontais Geosyncline, Bernina Nappe, Switzerland). Phd. Rice University, Houston, HoustonGoogle Scholar
  109. Schüpbach MA (1976) Tektonik im Gebiete des Berninapasses und der Val Chamuera (Engadin). Eclogae Geol Helv 69:63–73Google Scholar
  110. Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606Google Scholar
  111. Staub R (1946) Geologische Karte der Bernina-Gruppe und ihrer Umgebung im Oberengadin, Bergell, Val Malenco, Puschlav und Livigno, 1:50000. Herausgegeben von der Geologischen Kommission der Scweizerischen Naturforschenden Gesellscahft, 118, ZürichGoogle Scholar
  112. Suana M (1984) Die manganerzlagerstatten von Tinizong (Oberhalbstein, Graubunden). Beitrage zur geologie der Schweizerische Geotechnische 64:1–93Google Scholar
  113. Sulli A, Interbartolo F (2016) Subaerial exposure and drowning processes in a carbonate platform during the Mesozoic Tethyan rifting: The case of the Jurassic succession of Western Sicily (central Mediterranean). Sediment Geol 331:63–77Google Scholar
  114. Sutra E, Manatschal G (2012) How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology 40:139–142.  https://doi.org/10.1130/G32786.1 Google Scholar
  115. Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins Geochemistry. Geophys Geosyst 14:2575–2597.  https://doi.org/10.1002/ggge.20135 Google Scholar
  116. Tugend J, Manatschal G, Kusznir N, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33:1239–1276Google Scholar
  117. Tugend J, Manatschal G, Kusznir N, Masini E (2015) Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geol Soc Lond Spec Publ 413:171–203Google Scholar
  118. Ullmann CV, Thibault N, Ruhl M, Hesselbo SP, Korte C (2014) Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc Natl Acad Sci 111:10073–10076Google Scholar
  119. Weissert HJ, Bernoulli D (1985) A transform margin in the Mesozoic Tethys: evidence from the Swiss Alps. Geologische Rundsch 74:665–679Google Scholar
  120. Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161:695–702.  https://doi.org/10.1144/0016-764903-087 Google Scholar
  121. Zehnder K (1975) Zur Geologie des Sassalbo (Val Poschiavo, Graubünden). Vierteljahrsschr Naturforsch Ges Zürich 120:189–194Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  • Charlotte Ribes
    • 1
    Email author
  • Gianreto Manatschal
    • 1
  • Jean-François Ghienne
    • 1
  • Garry D. Karner
    • 2
  • Christopher A. Johnson
    • 2
  • Patricio H. Figueredo
    • 2
  • Nicolò Incerpi
    • 1
  • Marie-Eva Epin
    • 1
  1. 1.Institut de Physique du Globe de Strasbourg – Ecole et Observatoire des Sciences de la Terre, CNRS UMR 7516Université de StrasbourgStrasbourg CedexFrance
  2. 2.ExxonMobil Upstream Integrated Solutions Company, Global Tectonics and StructureSpringUSA

Personalised recommendations