Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 6, pp 1773–1792 | Cite as

Marine carbonate factories: a global model of carbonate platform distribution

  • Julien MichelEmail author
  • Marie Laugié
  • Alexandre Pohl
  • Cyprien Lanteaume
  • Jean-Pierre Masse
  • Yannick Donnadieu
  • Jean Borgomano
Review Article

Abstract

Platform carbonates are a major component of the Earth system, but their spatial distribution through geological times is difficult to reconstruct, due to the incompleteness of geological records, sampling heterogeneity, and their intrinsic complexity. Beyond this complexity, carbonates are not randomly distributed in the world oceans, neither in the modern nor in the past, and thus, global trends exist. In the present review, we focus on the understanding of the spatial distribution of carbonate production at a global scale. We use a deterministic approach, which focuses on discriminating components, stratigraphic architectures, and environmental features to relate shallow-water carbonate production to oceanographic parameters. The work is based on extensive literature reviews on carbonate platforms. Ecological niche modelling coupled with deep-time general circulation models is used to calibrate a predictive tool of carbonate factory distribution. A carbonate factory function is set up that is based on sea-surface oceanographic parameters (temperature, salinity, and primary productivity). The model was tested using remote-sensing and in situ oceanographic data of Modern times, while outputs of paleoceanographic models are utilized for Lower Aptian (Cretaceous) modelling. The approach allows determining four neritic carbonate factories that are called the marine biochemical, photozoan, photo-C-, and heterozoan factories. The model finely simulates the global distribution of Lower Aptian and Modern carbonate platforms. Carbonate factories appear to thrive for specific ranges along the environmental gradient of carbonate saturation. This conceptual scheme appears to be able to provide a simple, universal model of paleoclimatic zones of shallow-water marine carbonates.

Keywords

Carbonate factory Carbonate prediction Global distribution Paleoceanographic model Paleoclimatology 

Notes

Acknowledgements

Thanks are expressed to Total E&P for funding a significant part of the project and for granting permission to publish. Patrick Sorriaux, Emmanuelle Poli (Total RD Carbonate), Jérôme Hennuy and Jeroen Kenter (Total ISS Carbonate-PIT Geology) are thanked for their interaction with the project, as well as several scientists from Aix-Marseille University-CEREGE including Alexandre Lettéron, RD and ISS Carbonate including Sara Drachenberg (Total, Pau) and Denis Allemand (Scientific Center of Monaco, CSM) for interesting discussions. The authors thank the ‘SIGEO’ GIS service at CEREGE for providing access to the ArcGIS software, the CEA/CCRT for providing access to the HPC resources of TGCC under the allocation 2014-012212 made by GENCI, Pierre Sepulchre (LSCE, Gif-sur-Yvette, France) for providing the Köppen code used for analysis of the FOAM output, and Christopher R. Scotese (Northwestern University, Evanston, IL, USA) for providing the Aptian paleogeographical reconstruction. We are grateful to Pamela Hallock and John J. G. Reijmer for their constructive reviews.

References

  1. Anderson L, Dyrssen D (1994) Alkalinity and total carbonate in the Arabian Sea. Carbonate depletion in the Red Sea and Persian Gulf. Mar Chem 47:195–202Google Scholar
  2. Arp G, Reimer A, Reitner J (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Sediment Res 73:105–127Google Scholar
  3. Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Eur J Phycol 34:393–403Google Scholar
  4. Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280Google Scholar
  5. Beckwith ST, Byrne RH, Hallock P (2019) Riverine calcium end-members improve coastal saturation state calculations and reveal regionally variable calcification potential. Front Mar Sci 6:169.  https://doi.org/10.3389/fmars.2019.00169 Google Scholar
  6. Bedout DG, Budd DA, Schatzinger RA (1981) Depositional and diagenetic history of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas. The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109Google Scholar
  7. Bensing JP, James NP, Beauchamp B (2008) Carbonate deposition during a time of mid-latitude ocean cooling: early Permian subtropical sedimentation in the Sverdrup Basin, Arctic Canada. J Sediment Res 78:2–15Google Scholar
  8. Betzler C, Brachert TC, Nebelsick J (1997) The warm temperate carbonate province–A review of facies, zonations, and delimitations. Courier Forschungs-Institut Senckenberg 201:83–99Google Scholar
  9. Birkeland C (1987) Nutrient availability as a major determinant of differences among coastal hard-substratum communities in different regions of the tropics. In: Birkeland C (ed) Differences between Atlantic and Pacific tropical marine coastal systems: community structure, ecological processes, and productivity. UNESCO, Paris, pp 45–90Google Scholar
  10. Bosellini A, Russo A, Schroeder R (1999) Stratigraphic evidence for an early Aptian sea-level fluctuation: the Graua limestone of south-eastern Ethiopia. Cretac Res 20:783–791Google Scholar
  11. Bosence DWJ (1983) Coralline algal reef frameworks. J Geol Soc Lond 140:365–376Google Scholar
  12. Bosence DWJ, Pedley HM (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43Google Scholar
  13. Bouton A, Vennin E, Pace A, Bourillot R, Dupraz C, Thomazo C, Brayard A, Désaubliaux G, Visscher PT (2016) External controls on the distribution, fabrics and mineralization of modern microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba). Sedimentology 63:972–1016Google Scholar
  14. Bover-Arnal T, Ferrandez-Cañadell C, Aguirre J, Esteban M, Fernández-Carmona J, Albert-Villanueva E, Salas R (2017) Late Chattian platform carbonates with benthic foraminifera and coralline algae from the SE Iberian Plate. Palaios 32:61–82Google Scholar
  15. Brachert TC, Forst MH, Pais JJ, Legoinha P, Reijmer JJG (2003) Lowstand carbonates, highstand sandstones? Sedimtary Geol 155:1–12Google Scholar
  16. Brewer PG, Dyrssen D (1985) Chemical oceanography of the Persian Gulf. Prog Oceanogr 14:41–55Google Scholar
  17. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sedimtary Geol 79:3–57Google Scholar
  18. Busson G, Albanesi C (1967) Le Crétacé inférieur et le Jurassique terminal de l’Extrême-sud tunisien. Rivista Italiana de Paleontologia 73:591–634Google Scholar
  19. Busson G, Dufaure P, Foury G (1966) Nouvelles observations sur l’âge de la transgression crétacée au Tebaga de Médenine et au Sahara tunisien. Compte Rendu sommaire de la Société Géologique de France 3:135–136Google Scholar
  20. Camoin GF, Cabioch G, Eisenhauer A, Braga JC, Hamelin B, Lericolais G (2006) Environmental signifi cance of microbialites in reef environments during the last deglaciation. Sedimtary Geol 185:277–295Google Scholar
  21. Campbell RJ, Haig DW (1999) Bathymetric changes during early Cretaceous intracratonic marine transgression across the northeastern Eromanga Basin, Australia. Cretac Res 20:403–446Google Scholar
  22. Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346Google Scholar
  23. Carter BR, Toggweiler JR, Key RM, Sarmiento JL (2014) Processes determining the marine alkalinity and calcium carbonate saturation state distributions. Biogeosciences 11:1–14Google Scholar
  24. Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ (2015) Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. MBio.  https://doi.org/10.1128/mBio.01348-15 Google Scholar
  25. Chazottes V, Reijmer JJG, Cordier E (2008) Sediment characteristics in reef areas influenced by eutrophication-related alterations of benthic communities and bioerosion processes. Mar Geol 250:114–127Google Scholar
  26. Couce E, Ridgwell AJ, Hendy EJ (2012) Environmental controls on the global distribution of shallow-water coral reefs. J Biogeogr 39:1508–1523Google Scholar
  27. Diaz MR, Eberli GP (2019) Decoding the mechanism of formation in marine ooids: a review. Earth Sci Rev.  https://doi.org/10.1016/j.earscirev.2018.12.016 Google Scholar
  28. Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303Google Scholar
  29. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162Google Scholar
  30. Dutertre M, Grall J, Ehrhold A, Hamon D (2015) Environmental factors affecting maerl bed structure in Brittany (France). Eur J Phycol 50:371–383Google Scholar
  31. Eberli GP, Anselmetti FS, Isern AR, Delius H (2010) Timing of changes in sea-level and currents along Miocene platforms on the Marion Plateau, Australia. In: Morgan WA, George AD, Harris PM, Kupecz JA, Sarg JF (eds) Cenozoic carbonate systems of Australasia, vol 95. SEPM Society for Sedimentary Geology, Tulsa, pp 219–242Google Scholar
  32. Embry JC, Vennin E, van Buchem FSP, Schroeder R, Pierre C, Aurell M (2010) Sequence stratigraphy and carbon isotope stratigraphy of an Aptian mixed carbonate-siliciclastic platform to basin transition (Galve sub-basin, NE Spain). In: van Buchem FSP, Gereds KD, Esteban M (eds) Mesozoic and cenozoic carbonate systems of the Mediterranean and the Middle East: stratigraphic and diagenetic reference models, vol 329. Geological Society of London, London, pp 113–143Google Scholar
  33. Föllmi KB, Bodin S, Bodin S, Linder P (2006) Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21(4):PA4211.  https://doi.org/10.1029/2006PA001313 Google Scholar
  34. Föllmi KB, Bodin S, Bodin S, Linder P, van de Schootbrugge B (2007) Unlocking paleo-environmental information from early Cretaceous shelf sediments in the Helvetic Alps: stratigraphy is the key! Swiss J Geosci 100:349–369Google Scholar
  35. Frank TD, Pritchard JM, Fielding CR, Mory AJ (2012) Cold-water carbonate deposition in a high-latitude, glacially influenced permian seaway (southern carnarvon basin, Western Australia). Aust J Earth Sci 59:479–494Google Scholar
  36. Franseen EK (2006) Mississippian (Osagean) shallow-water, mid-latitude siliceous sponge spicule and heterozoan carbonate facies: an example from Kansas with implications for Regional controls and distribution of potential reservoir facies. Current Research in Earth Sciences: Kansas Geological Survey Bulletin 252, part 1. http://www.kgs.ku.edu/Current/2006/franseen/index.html. Accessed 17 May 2019
  37. Freiwald A (1998) Modern nearshore cold-temperate calcareous sediments in the Troms District, northern Norway. J Sediment Res 68:763–776Google Scholar
  38. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. UNEP-WCMC, CambridgeGoogle Scholar
  39. Fritz DA, Belsher TW, Medlin JM, Stubbs JL, Wright RP, Harris PM (2000) New exploration concepts for the Edwards and Sligo margins, cretaceous of onshore Texas. AAPG Bull 84:905–922Google Scholar
  40. Frost SH (1981) Oligocene reef coral biofacies of the Vicentin, northern Italy. In: Toomey DF (ed) European fossil reef models, vol 30. SEPM Society for Sedimentary Geology, Tulsa, pp 483–539Google Scholar
  41. Gattuso J, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46Google Scholar
  42. Gili E, Negra M, Skelton PW (2003) North African Cretaceous carbonate platform systems, vol 28. NATO science series IV, earth and environmental sciences. Springer, New YorkGoogle Scholar
  43. Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguin JE, Borges JM (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32:213–216Google Scholar
  44. Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguin JE, Borges JM (2006) Carbonates calibrated against oceanographic parameters along a latitudinal transect in the Gulf of California, Mexico. Sedimentology 53:297–320Google Scholar
  45. Hallock P (2001) Coral reefs, carbonate sediments, nutrients, and global change. In: Stanley GD (ed) The history and sedimentology of ancient reef systems. Kluwer, New York, pp 387–427Google Scholar
  46. Hallock P (2015) Changing influences between life and limestones in earth history. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, Dordrecht, pp 17–42Google Scholar
  47. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398Google Scholar
  48. Hallock P, Sheps K, Chapronière G, Howell M (2006) Larger benthic foraminifers of the Marion Plateau, northeastern Australia (ODP Leg 194): comparison of faunas from bryozoan (sites 1193 and 1194) and red algal (sites 1196–1198) dominated carbonate platforms. In: Anselmetti FS, Isern AR, Blum P, Betzler C (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 194, issue 2, pp 1–31Google Scholar
  49. Henrich R, Freiwald A, Betzler C, Bader B, Schäfer P, Samtleben C, Brachert TTC, Wehrmann A, Zankl H, Kühlmann DHH (1995) Controls on modern carbonate sedimentation on warm-temperate to Arctic coasts, shelves and seamounts in the Northern Hemisphere: implications for fossil counterparts. Facies 32:71–108Google Scholar
  50. Henrich R, Freiwald A, Birkett T, Schäfer P (1997) Evolution of an Arctic open-shelf carbonate platform, Spitsbergen Bank (Barents Sea). In: James NP, Clarke JAD (eds) Cool-water carbonates, vol 56. SEPM Society for Sedimentary Geology, Tulsa, pp 163–181Google Scholar
  51. Iba Y, Sano SI, Miura T (2011) Orbitolinid foraminifers in the Northwestern Pacific: their taxonomy and stratigraphy. Micropaleontology 57:163–171Google Scholar
  52. Jacob RL (1997) Low frequency variability in a simulated atmosphere ocean system. PhD thesis, University of Wisconsin-MadisonGoogle Scholar
  53. James NP (1983) Reef environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American Association of Petroleum Geologists, Tulsa, pp 346–440Google Scholar
  54. James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke J (eds) Cool-water carbonates, vol 56. SEPM Society for Sedimentary Geology, Tulsa, pp 1–20Google Scholar
  55. James NP, Bone Y (2011) Neritic carbonate sediments in a temperate realm—South Australia. Springer, DordrechtGoogle Scholar
  56. James NP, Bourque PA (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies models, response to sea level change, vol 1. Geological Association of Canada, St. John’s, pp 323–347Google Scholar
  57. James NP, Jones BG (2015) Origin of carbonate rocks. Wiley, HobokenGoogle Scholar
  58. James NP, Lukasik JJ (2010) Cool- and cold-water carbonates. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St. John’s, pp 371–399Google Scholar
  59. James NP, Collins LB, Bone Y, Hallock P (1999) Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. J Sediment Res 69:1297–1321Google Scholar
  60. James NP, Bone Y, Brown KM, Cheshire A (2009a) Calcareous epiphyte production in cool-water carbonate seagrass depositional environments; Southern Australia. In: Swart PK, Eberli GP, McKenzie JA (eds) Perspectives in carbonate geology: a tribute to the career of Robert Nathan Ginsburg, vol 41. Wiley, Hoboken, pp 123–148Google Scholar
  61. James NP, Frank TD, Fielding CR (2009b) Carbonate sedimentation in a permian high-latitude, subpolar depositional realm: Queensland, Australia. J Sediment Res 79:125–143Google Scholar
  62. James NP, Reid CM, Bone Y, Levings A, Malcolm I (2013) The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia. Sediment Geol 291:1–26Google Scholar
  63. Jiang ZP, Tyrrell T, Hydes DJ, Dai M, Hartman SE (2014) Variability of alkalinity and the alkalinity-salinity relationship in the tropical and subtropical surface ocean. Glob Biogeochem Cycl.  https://doi.org/10.1002/2013gb004678 Google Scholar
  64. Jiang LQ, Feely RA, Carter BR, Greeley DJ, Gledhill DK, Arzayus KM (2015) Climatological distribution of aragonite saturation state in the global oceans. Glob Biogeochem Cycl 29:1656–1673.  https://doi.org/10.1002/2015gb005198 Google Scholar
  65. Jones NS, Ridgwell AJ, Hendy EJ (2015) Evaluation of coral reef carbonate production models at a global scale. Biogeosciences 12:1339–1356Google Scholar
  66. Kiessling W, Flügel E, Golonka J (1999) Paleoreef Maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bull 83:1552–1587Google Scholar
  67. Kiessling W, Flügel E, Golonka J (2003) Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36:195–226Google Scholar
  68. Kindler P, Wilson MEJ (2010) Carbonate grain associations: their use and environmental significance, a brief review. In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene–Miocene climatic transition, vol 42. Blackwell, Oxford, pp 35–48Google Scholar
  69. Kleypas J (2015) Invisible barriers to dispersal. Science 348:1086–1087Google Scholar
  70. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159Google Scholar
  71. Klicpera A, Michel J, Westphal H (2015) Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d’Arguin, Mauritania. Facies 61:421.  https://doi.org/10.1007/s10347-014-0421-5 Google Scholar
  72. Lauvset SK, Key RM, Olsen A, van Heuven S, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Perez FF, Suzuki T, Watelet S (2016) A new global interior ocean mapped climatology: the GLODAP version 2. Earth Syst Sci Data 8:325–340.  https://doi.org/10.5194/essd-8-325-2016 Google Scholar
  73. Lees A (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Mar Geol 19:159–198Google Scholar
  74. Lees A, Buller AT (1972) Modern temperate water and warm water shelf carbonate sediments contrasted. Mar Geol 13:M67–M73Google Scholar
  75. Lehmann C, Osleger DA, Montañez IP, Sliter W, Arnaud-Vanneau A, Banner J (1999) Evolution of Cupido and Coahuila carbonate platforms, Early Cretaceous, northeastern Mexico. GSA Bull 111:1010–1029Google Scholar
  76. Lokier SW, Wilson MEJ, Burton LM (2009) Marine biota response to clastic sediment influx: a quantitative approach. Palaeogeogr Palaeoclimatol Palaeoecol 281:25–42Google Scholar
  77. Lowery JG, Rankey EC (2017) Nearshore influences of upwelling, waves, and currents on a tropical carbonate ramp: holocene, northwestern Yucatan shelf, Mexico. J Sediment Res 87:546–566Google Scholar
  78. Lunt DJ, Farnsworth A, Loptson C, Foster GL, Markwick P et al (2016) Palaeogeographic controls on climate and proxy interpretation. Clim Past 12:1181–1198.  https://doi.org/10.5194/cp-12-1181-2016-supplement Google Scholar
  79. Markello JR, Koepnick RB, Waite LE, Collins JF (2008) The carbonate analogs through time (CATT) hypothesis and the global atlas of carbonate fields—a systematic and predictive look at Phanerozoic carbonate systems. In: Lukasik J, Schlager W (eds) Controls on carbonate platform and reef development, vol 89. SEPM Society for Sedimentary Geology, Tulsa, pp 15–46Google Scholar
  80. Martin CS, Giannoulaki M, De Leo F et al (2014) Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Nat Sci Rep 4:5073.  https://doi.org/10.1038/srep05073 Google Scholar
  81. Martindale W, Boreen TD (1997) Temperature-stratified Mississippian carbonates as hydrocarbon reservoirs—examples from the Foothills of the Canadian Rockies. In: James NP, Clarke JAD (eds) Cool-water carbonates, vol 56. SEPM Society for Sedimentary Geology, Tulsa, pp 391–409Google Scholar
  82. Martindale RC, Corsetti FA, James NP, Bottjer DJ (2015) Paleogeographic trends in Late Triassic reef ecology from northeastern Panthalassa. Earth Sci Rev 142:18–37Google Scholar
  83. Messabeb H, Contamine F, Cézac P, Serin JP, Gaucher EC (2016) Experimental measurement of CO2 solubility in aqueous NaCl solution at temperature from 323.15 to 423.15 K and pressure of up to 20 Mpa. J Chem Eng Data 61:3573–3584Google Scholar
  84. Michel J, Mateu-Vicens G, Westphal H (2011a) Modern heterozoan carbonates from a eutrophic tropical shelf (Mauritania). J Sediment Res 81:641–655Google Scholar
  85. Michel J, Westphal H, von Cosel R (2011b) The mollusk fauna of soft sediments from the tropical, upwelling-influenced shelf of Mauritania (northwestern Africa). Palaios 26:447–460Google Scholar
  86. Michel J, Borgomano J, Reijmer JJG (2018) Heterozoan carbonates: when, where and why? A synthesis on parameters controlling carbonate production and occurrences. Earth Sci Rev 182:50–67Google Scholar
  87. Muir PR, Wallace CC, Done T, Aguirre JD (2015) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138Google Scholar
  88. Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12Google Scholar
  89. Nelson CS, James NP (2000) Marine cements in mid-Tertiary cool-water limestones of New Zealand and southern Australia. Sedimentology 47:609–629Google Scholar
  90. Nelson CS, Keane SL, Head PS (1988) Non-tropical carbonate deposits on the modern New Zealand shelf. Sed Geol 60:71–94Google Scholar
  91. Nelson CS, Winefield PR, Hood SD, Caron V, Pallentin A, Kamp PJJ (2003) Pliocene Te Aute limestones, New Zealand: expanding concepts for cool-water shelf carbonates. N Z J Geol Geophys 46:407–424Google Scholar
  92. Nilsson HC, Rosenberg R (2000) Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples. Mar Ecol Prog Ser 197:139–149Google Scholar
  93. O’Connell LG, James NP, Doubell M, John F (2016) Oceanographic controls on shallow-water temperate carbonate sedimentation: Spencer Gulf, South Australia. Sedimentology 63:105–135Google Scholar
  94. O’Brien CL, Robinson SA, Pancost RD, Damsté JSS, Schouten S, Lunt DJ et al (2017) Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci Rev 172:224–247Google Scholar
  95. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Pérez FF, Suzuki T (2016) The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst Sci Data 8:297–323.  https://doi.org/10.5194/essd-8-297-2016 Google Scholar
  96. Omer WMM (2010) Ocean acidification in the Arabian Sea and the Red Sea. Dissertation, Undergraduate Honors Theses, University of Bergen. http://bora.uib.no/bitstream/handle/1956/7538/71959070.pdf?sequence=1. Accessed 22 Jan 2019
  97. Opdyke BN, Wilkinson BH (1990) Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeogr Palaeoclimatol Palaeoecol 78:135–148Google Scholar
  98. Opdyke BN, Wilkinson BH (1993) Carbonate mineral saturation state and cratonic limestone accumulation. Am J Sci 293:217–234Google Scholar
  99. Pace A, Bourillot R, Bouton A, Vennin E, Galaup S, Bundeleva I, Patrier P, Dupraz C et al (2016) Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Sci Rep 6:31495.  https://doi.org/10.1038/srep31495 Google Scholar
  100. Parrish JT (1982) Upwelling and petroleum source beds, with reference to paleozoic. AAPG Bull 66:750–774Google Scholar
  101. Parrish JT (1995) Paleogeography of Corg-rich rocks and the preservation versus production controversy. In: Huc AY (ed) Paleogeography, paleoclimate, and source rocks AAPG studies in geology, vol 40. American Association of Petroleum Geologists, Tulsa, pp 1–20Google Scholar
  102. Parrish JT, Curtis RL (1982) Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr Palaeoclimatol Palaeoecol 40:31–66Google Scholar
  103. Parrish JT, Scotese CR, Ziegler AM (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40:67–101Google Scholar
  104. Pedley HM, Carannante G (2006) Cool-water carbonate ramps: a review. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls, vol 255. Geological Society of London, London, pp 1–9Google Scholar
  105. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen–Geiger climate classification. EGU Hydrol Earth Syst Sci Discuss 11:1633–1644Google Scholar
  106. Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil de la Station Marine d’Endoume 31, pp 1–137. http://paleopolis.rediris.es/BrachNet/REF/Download/Manuel.html. Accessed 12 June 2016
  107. Perry CT, Beavington-Penney SJ (2005) Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique. Sediment Geol 174:161–176Google Scholar
  108. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144Google Scholar
  109. Pittet B, van Buchem FSP, Hillgärtner H, Razin P, Grötsch J, Droste H (2002) Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian-Aptian shallow-water carbonates in northern Oman. Sedimentology 49:555–581Google Scholar
  110. Pohl A, Laugié M, Borgomano J, Michel J, Lanteaume C, Scotese CR, Frau C, Poli E, Masse JP, Donnadieu Y (2019) Quantifying the paleogeographical driver of Cretaceous carbonate platforms development using paleoecological niche modeling. Palaeogeogr Palaeoclimatol Palaeoecol 514:222–232Google Scholar
  111. Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334Google Scholar
  112. Pomar L, Hallock P (2008) Carbonate factories: a conundrum in sediment geology. Earth Sci Rev 87:134–169Google Scholar
  113. Pomar L, Mateu-Vicens G, Morsilli M, Brandano M (2014) Carbonate ramp evolution during the late Oligocene (Chattian), Salento peninsula, southern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 404:109–132Google Scholar
  114. Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Pet Geol 83:261–304.  https://doi.org/10.1016/j.marpetgeo.2017.03.015 Google Scholar
  115. Prosorovsky VA (1990) The Urgonian facies of central Asia. Cretac Res 11:253–260Google Scholar
  116. Purkis SJ, Harris PM, Ellis J (2012) Patterns of sedimentation in the contemporary Red Sea as an analog for ancient carbonates in rift settings. J Sediment Res 82:859–870Google Scholar
  117. Purser BH (1973) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, New YorkGoogle Scholar
  118. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  119. Rao CP (1996) Modern carbonates: tropical, temperate, polar—introduction to sedimentology and geochemistry. University of Tasmania, HobbartGoogle Scholar
  120. Reijmer JJG (2014) Carbonate Factories. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of marine geosciences. Springer, Dordrecht, pp 80–84.  https://doi.org/10.1007/978-94-007-6644-0 Google Scholar
  121. Reijmer JJG, Bauch T, Schäfer P (2012) Carbonate facies patterns in surface sediments of upwelling and non-upwelling shelf environments (Panama, East Pacific). Sedimentology 59:32–56Google Scholar
  122. Ridgwell AJ, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315Google Scholar
  123. Riding R, Liang L (2005a) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr Palaeoclimatol Palaeoecol 219:101–115Google Scholar
  124. Riding R, Liang L (2005b) Seawater chemistry control of marine limestone accumulation over the past 550 million years. Rev Esp Micropaleontol 37:1–11Google Scholar
  125. Riding R, Liang L, Lee J-H, Virgone A (2019) Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeogr Palaeoclimatol Palaeoecol 514:135–143Google Scholar
  126. Riegl BM, Purkis SJ (2012) Coral reefs of the Gulf: adaptation to climatic extremes. Springer, DordrechtGoogle Scholar
  127. Riegl B, Poiriez A, Janson X, Bergman KL (2010) The Gulf: Facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp. In: Westphal H, Riegl B, Eberli GP (eds) Carbonate depositional systems: Assessing dimensions and controlling parameters. The Bahamas, Belize and the Persian/Arabian Gulf. Springer, Dordrecht, pp 145–213Google Scholar
  128. Riosmena-Rodríguez R, Nelson W, Aguirre J (2017) Rhodolith/Maërl beds: a global perspective. Coastal Research Library, vol 15. Springer, ChamGoogle Scholar
  129. Saraswat R, Kouthanker M, Kurtarkar SR, Nigam R, Naqvi SWA, Linshy VN (2015) Effect of salinity induced pH/alkalinity changes on benthic foraminifera: a laboratory culture experiment. Estuar Coast Shelf Sci 153:96–107Google Scholar
  130. Schlager W (2000) Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate factories. In: Insalaco E, Skelton P, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society of London, London, pp 217–227Google Scholar
  131. Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464Google Scholar
  132. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM concepts in sedimentology and paleontology No. 8, Tulsa, OklahomaGoogle Scholar
  133. Schlagintweit F, Bucur II, Rashidi K, Saberzadeh B (2013) Praeorbitolina claveli n.sp. (benthic foraminifera) from the Lower Aptian sensu lato (Bedoulian) of Central Iran. Notebooks in Geology CG2013_L04:255–272Google Scholar
  134. Scotese CR (2014a) Late Cretaceous Atlas of Paleogeograhic Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 16–22, Mollweide project, PALEOMAP Project, Evanston, IL.  https://doi.org/10.13140/2.1.4691.3284
  135. Scotese CR (2014b) Early Cretaceous Atlas of Paleogeograhic Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 23–31, Mollweide project, PALEOMAP Project, Evanston, IL.  https://doi.org/10.13140/2.1.4099.4560
  136. Scott RW (1993) Early Cretaceous carbonate platform, U.S. gulf Coast. In: Simo JA, Scott RW, Masse JP (eds) Cretaceous carbonate platforms, AAPG Memoir 56. American Association of Petroleum Geologists, Tulsa, pp 97–110Google Scholar
  137. Simo JA, Scott RW, Masse JP (1993) Cretaceous carbonate platforms. AAPG Memoir 56. American Association of Petroleum Geologists, TulsaGoogle Scholar
  138. Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117Google Scholar
  139. Stanley MS, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reefbuilding and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19Google Scholar
  140. Summerhayes CP, Milliman JD, Briggs SR, Bee AG, Hogan C (1976) Northwest African shelf sediments: influence of climate and sedimentary processes. J Geol 84:277–300Google Scholar
  141. Takahashi M (1983) Space-time distribution of the Late Mesozoic to Early Cenozoic magmatism in East Asia and its tectonic implications. In: Hashimoto M, Uyeda S (eds) Accretion tectonics in the Circum-Pacific regions. Terrapub, Tokyo, pp 69–88Google Scholar
  142. Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté E, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78Google Scholar
  143. Tomas S, Zitzmann M, Homann M, Rumpf M, Amour F, Benisek M, Marcano G, Mutti M, Betzler C (2010) From ramp to platform: building a 3D model of depositional geometries and facies architectures in transitional carbonates in the Miocene, northern Sardinia. Facies 56:195–210Google Scholar
  144. Tomassetti L, Brandano M (2013) Sea level changes recorded in mixed siliciclastic–carbonate shallow-water deposits: the Cala di Labra Formation (Burdigalian, Corsica). Sediment Geol 294:58–67Google Scholar
  145. Track PD (1936) Relation of salinity to the calcium carbonate content of marine sediments. US Geological Survey, Professional Paper 186-N, Washington, pp 273–299Google Scholar
  146. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, OxfordGoogle Scholar
  147. van Buchem FSP, Allan TL, Laursen GV, Lotfpour M, Moallemi A, Monibi S, Motiei H, Pickard NAH, Tahmasbi AR, Vedrenne V, Vincent B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geol Soc Lond Spec Publ 329:219–263Google Scholar
  148. Veron JEN (1995) Corals in space and time. Comstock/Cornell, IthacaGoogle Scholar
  149. Wasserman HN (2011) A global view of coral reef cementation as a function of seawater aragonite saturation states. Dissertation, Undergraduate Honors Theses 722, University of Colorado Boulder http://scholar.colorado.edu/honr_theses/722/. Accessed 09 Jan 2019
  150. Wells SM (1988a) Coral reefs of the world. Volume 1: Atlantic and Eastern Pacific. UNEP Regional Seas Directories and Bibliographies, IUCN, Gland, Switzerland and Cambridge, UK/UNEP, Nairobi, Kenya. ISBN: 2-88032-943-4Google Scholar
  151. Wells SM (1988b) Coral reefs of the world. Volume 2: Indian Ocean, Red Sea and Gulf. UNEP Regional Seas Directories and Bibliographies, IUCN, Gland, Switzerland and Cambridge, UK/UNEP, Nairobi, Kenya. ISBN: 2-88032-944-2Google Scholar
  152. Wells SM (1988c) Coral reefs of the world. Volume 3: Central and Western Pacific. UNEP Regional Seas Directories and Bibliographies, IUCN, Gland, Switzerland and Cambridge, UK/UNEP, Nairobi, Kenya. ISBN: 2-88032-945-0Google Scholar
  153. Westphal H, Halfar J, Freiwald A (2010a) Heterozoan carbonates in subtropical to tropical settings in the present and past. Int J Earth Sci 99:S153–S169Google Scholar
  154. Westphal H, Riegl B, Eberli GP (2010b) Carbonate depositional systems: Assessing dimensions and controlling parameters—The Bahamas, Belize and the Persian/Arabian Gulf. Springer, DordrechtGoogle Scholar
  155. Whalen MT (1995) Barred basins: A model for eastern ocean basin carbonate platforms. Geology 23:625–628Google Scholar
  156. Wilson JL (1975) Carbonate facies in geologic history. Springer, BerlinGoogle Scholar
  157. Wilson MEJ (2002) Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sediment Geol 147:295–428Google Scholar
  158. Wilson MEJ (2008) Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 265:262–274Google Scholar
  159. Wilson MEJ (2012) Equatorial carbonates: an earth systems approach. Sedimentology 59:1–31Google Scholar
  160. Wilson JL, Ward WC (1993) Early Cretaceous carbonate platforms of northeastern and east-central Mexico. In: Simo JA, Scott RW, Masse JP (eds) Cretaceous carbonate platforms, AAPG Memoir 56. American Association of Petroleum Geologists, Tulsa, pp 35–50Google Scholar
  161. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52Google Scholar
  162. Wood R (1993) Nutrients, predation and the history of reef-building. Palaios 8:526–543Google Scholar
  163. Yates KK, Robbins LL (2001) Microbial lime-mud production and its relation to climate change. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. AAPG Studies in Geology, vol 47. American Association of Petroleum Geologists, Tulsa, pp 267–283Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, IRD, INRA, Coll FranceCEREGEAix-en-ProvenceFrance
  2. 2.Department of Earth SciencesUniversity of California, RiversideRiversideUSA
  3. 3.MODIS, PauPauFrance

Personalised recommendations