International Journal of Earth Sciences

, Volume 108, Issue 6, pp 1937–1957 | Cite as

Precambrian basement in the Rheic suture zone of the Central European Variscides (Odenwald)

  • Wolfgang DörrEmail author
  • Eckhardt Stein
Original Paper


Detrital zircon age spectra of Ediacaran paragneiss from the Rheic suture between the Rhenohercynian Zone and Saxothuringian Zone suggest that they originated from different parts of peri-Gondwana. The paragneiss from the Northern Phyllite Belt displays an age spectrum of detrital zircons with a high amount of Neoproterozoic (82%) and Mesoproterozoic zircons (11%) typical for Amazonian provenance, whereas the spectrum from the metagreywacke of the Odenwald (Mid-German Crystalline Zone) shows a Mesoproterozoic age gap which is correlated with the West African Craton. The metagreywacke of the Odenwald contains 20% Paleoproterozoic and 32% Archean zircons, whereas the paragneiss of the Northern Phyllite Belt (Wartenstein Crystalline) contains only 6% Paleoproterozoic and no Archean zircons. The paleoposition of the basement of Northern Phyllite Belt was proximal to the Avalonian magmatic arc of the London–Brabant high. The Armorican metagreywacke of the Odenwald occupied a distal position to a Neoproterozoic magmatic arc, probably in a back-arc basin related to the West African Craton. Such a U–Pb age spectrum of detrital zircons together with a Mesoproterozoic age gap is typical for sediments of Armorica in Europe during the Ediacaran to Carboniferous. Neoproterozoic igneous rocks extruded at 566 ± 2 Ma forming a volcano-clastic sequence of the Cadomian magmatic arc which is the wall rock of the Silurian to Carboniferous plutons of the entire West Odenwald. This is the first occurrence of an extensive Cadomian crystalline basement in the Mid-German Crystalline Zone. Metagranite dykes crosscut the foliation of the Cadomian para- and orthogneiss at 542 ± 3 Ma. The deformation and migmatization of the Cadomian basement are bracketed between 566 and 542 Ma. A similar late Cadomian event is known from the Bohemian Massif and the Armorican Massif. Large Cadomian plutons with an age around 540 Ma, like that of the northern Odenwald, are common for Armorica. Silurian to Devonian granitoids (434 ± 4 Ma, 411 ± 5 Ma) are witness to an active margin along the northern boundary of Armorica. The Cadomian basement of the Odenwald together with the Palaeozoic granitoids is overprinted by a high-grade metamorphism at 384 ± 4 Ma (U–Pb on zircon) and cooled down below ca. 500 °C at 370 Ma (K–Ar ages of amphibole; U–Pb on titanite). Such a combination of late Cadomian and early Variscan ages could be correlated with the Münchberger Nappe, the Tepla–Barrandian Unit, Central Armorican Domain and the Massif Central.


Cadomian basement Devonian metamorphism U–Pb ages Provenance Saxothuringian Zone 



We are grateful to Janina Schastok and Linda Marko (Universität Frankfurta.M.) for their invaluable help with the isotopic analyses. The quality of the paper was improved by the comments of Jiří Žák (Praha) and Friedrich Finger (Salzburg). All of these are kindly acknowledged.

Supplementary material

531_2019_1741_MOESM1_ESM.pdf (20 kb)
Supplementary material 1 (PDF 19 kb)
531_2019_1741_MOESM2_ESM.pdf (24 kb)
Supplementary material 2 (PDF 23 kb)
531_2019_1741_MOESM3_ESM.pdf (20 kb)
Supplementary material 3 (PDF 20 kb)
531_2019_1741_MOESM4_ESM.pdf (20 kb)
Supplementary material 4 (PDF 19 kb)
531_2019_1741_MOESM5_ESM.pdf (16 kb)
Supplementary material 5 (PDF 15 kb)
531_2019_1741_MOESM6_ESM.pdf (12 kb)
Supplementary material 6 (PDF 12 kb)
531_2019_1741_MOESM7_ESM.pdf (14 kb)
Supplementary material 7 (PDF 14 kb)
531_2019_1741_MOESM8_ESM.pdf (15 kb)
Supplementary material 8 (PDF 14 kb)
531_2019_1741_MOESM9_ESM.pdf (53 kb)
Supplementary material 9 (PDF 53 kb)
531_2019_1741_MOESM10_ESM.pdf (47 kb)
Supplementary material 10 (PDF 47 kb)
531_2019_1741_MOESM11_ESM.pdf (6 kb)
Supplementary material 11 (PDF 6 kb)
531_2019_1741_MOESM12_ESM.pdf (10 kb)
Supplementary material 12 (PDF 9 kb)
531_2019_1741_MOESM13_ESM.pdf (57 kb)
Supplementary material 13 (PDF 56 kb)
531_2019_1741_MOESM14_ESM.pdf (56 kb)
Supplementary material 14 (PDF 56 kb)
531_2019_1741_MOESM15_ESM.pdf (356 kb)
Supplementary material 15 (PDF 356 kb)
531_2019_1741_MOESM16_ESM.pdf (306 kb)
Supplementary material 16 (PDF 306 kb)
531_2019_1741_MOESM17_ESM.pdf (27 kb)
Supplementary material 17 (PDF 27 kb)
531_2019_1741_MOESM18_ESM.pdf (21 kb)
Supplementary material 18 (PDF 20 kb)
531_2019_1741_MOESM19_ESM.pdf (7 kb)
Supplementary material 19 (PDF 6 kb)


  1. Adusumalli CI, Schubert W (2001) Geochemistry of metabauxites in the Bergsträsser Odenwald (Mid German Crystalline Rise) and palaeoenvironmental. Implic Mineral Petrol 72:45–62Google Scholar
  2. Ahrendt H, Clauer N, Hunziker JC, Weber K (1983) Migration of folding and metamorphism in the Rheinisches Schiefergebirge deduced from K–Ar and Rb–Sr age determinations. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer, Berlin, pp 323–338Google Scholar
  3. Altenberger U, Besch T (1993) The Böllstein Odenwald: evidence for pre- to early Variscan plate convergence in the Central European Variscides. Geol Rundsch 82:475–488Google Scholar
  4. Altenberger U, Besch T, Mocek B, Zaipeng Y, Yong S (1990) Geochemie und Geodynamik des Böllsteiner Odenwaldes. Mainzer geow Mitt 19:183–200Google Scholar
  5. Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443Google Scholar
  6. Anderle H-J, Franke W, Schwab M (1995) Stratigraphy of the phyllite zone in tectonostratigraphic evolution of the Central and East European orogens. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 99–107Google Scholar
  7. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143Google Scholar
  8. Bachtadse V, Torsvik TH, Tait JA, Soffel HC (1995) Paleomagnetic constraints on the paleogeographic evolution of Europe during the Paleozoic. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 567–578Google Scholar
  9. Bahlburg H, Vervoort JD, Du Frane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235Google Scholar
  10. Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica-Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, London, pp 87–102Google Scholar
  11. Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäfer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, London, pp 19–36Google Scholar
  12. Bierther W (1941) Geologie des unteren Hahnenbachtales bei Kirn a. d. Nahe. Jahresber Reichsst Bodenforsch 61:109–156Google Scholar
  13. Brätz H (2000) Radiometrische Altersdatierungen und geochemischen Untersuchungen von Orthogneisen, Granite und Granitporphyren aus dem Ruhlaer Kristallin, Mitteldeutsche Kristallinzone. Dissertation Univ. Würzburg, Germany, pp 1–151Google Scholar
  14. Brinkmann R (1948) Die mitteldeutsche Schwelle. Geol Rundsch 36:55–66Google Scholar
  15. Buschmann B (1995) Geotectonic facies analysis of the Rothstein Formation (Neoproterozoic, Saxothuringian Zone, Germany). Unpublished Thesis Bergakademie FreibergGoogle Scholar
  16. Clark AH, Scott DJ, Sandeman HA, Bromley AV, Farrar E (1998) Siegenian generation of the Lizard ophiolite: U–Pb zircon age data for plagiogranite, Porthkerries, Cornwall. J Geol Soc Lond 155:595–598Google Scholar
  17. Cocks LRM, Fortey RA (2009) Avalonia—a long-lived terrane in the Lower Palaeozoic? Geol Soc Lond Spec Publ 325:141–154Google Scholar
  18. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125Google Scholar
  19. Dittmar U, Oncken O (1992) Anatomie und Kinematik eines passiven varistischen Kontinentalrandes—zum Strukturbau des südwestlichen Rheinischen Schiefergebirges. Frankf Geowiss Arb Ser A 11:34–37Google Scholar
  20. Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411Google Scholar
  21. Dörr W (1986) Stratigraphie, Stoffbestand und Fazies der Giessener Grauwacke (E’ Rheinisches Schiefergebirge). Diss Universität Giessen, pp 1–134Google Scholar
  22. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85Google Scholar
  23. Dörr W, Zulauf G, Gerdes A, Lahaye J, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108Google Scholar
  24. Dörr W, Zulauf G, Gerdes A, Loeckle F (2017) Provenance of Upper Devonian clastic (meta)sediments of the Böllstein Odenwald (Mid-German-Crystalline-Zone, Variscides). Int J Earth Sci 106:2927–2943Google Scholar
  25. Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic-Early Paleozoic volcano-sedimentary successions of the Teplá-Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geologica Saxonica 54:1–165Google Scholar
  26. Dubińska E, Bylina P, Kozlowski A, Dörr W, Nejbert K (2004) U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem Geol 203:183–203Google Scholar
  27. Eckelmann K, Nesbor D, Königshof P, Linnemann U, Hofmann M, Lange J-M, Sagawe A (2013) Plate interactions of Laurussia and Gondwana during the formation of Pangaea-Constraints by U–Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rheinisches Schiefergebirge. (Rhenohercynian zone, Central European Variscides). Gondwana Res 25:1484–1500Google Scholar
  28. Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemistry Society, reviews in mineralogy and geochemistry, vol 53. Washington, DC, pp 277–303Google Scholar
  29. Finger F, von Quadt A (1995) U/Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian Massif, Austria—further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz Mineral Petrogr Mitt 75:265–270Google Scholar
  30. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–89Google Scholar
  31. Franke W, Oncken O (1990) Geodynamic evolution of the north-central Variscides: a comic strip. In: Freeman R, Giese P, Mueller S (eds) The European geotraverse: integrative studies. European Science Foundation, Strasbourg, pp 187–194Google Scholar
  32. Frei D, Gerdes A (2008) Accurate and precise in situ zircon U–Pb age dating with high spatial resolution and high sample through put by automated LA-SF-ICP-MS. Chem Geol 261(3–4):261–270Google Scholar
  33. Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci (Geol Rundsch) 94:369–384Google Scholar
  34. Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res 42:63–83Google Scholar
  35. Hartmann LA, Santos JOS (2004) Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology 32:73–76Google Scholar
  36. Haverkamp J (1991) Detritusanalyse unterdevonischer Sandsteine des Rheinisch-Ardennischen Schiefergebirges und ihre Bedeutung für die Rekonstruktion der sedimentliefernden Hinterländer. Thesis Techn Univ Aachen, p 156Google Scholar
  37. Heinrichs T, Siegesmund S, Frei D, Drobe M, Schulz B (2012) Provenance signatures from whole-rock geochemistry and detrital zircon ages of metasediments from the Austroalpine basement south of the Tauern Window (Eastern Tyrol, Austria). Geo Alp 9:156–185Google Scholar
  38. Henes-Klaiber U (1992) Zur Geochemie der variszischen Granitoide des Bergsträsser Odenwalds. Thesis, University of KarlsruheGoogle Scholar
  39. Hindel R (1975) Geochemische Untersuchung der Paragneise zwischen Heppenheim und Lindenfels/Odenwald. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 135–139Google Scholar
  40. Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by 40Ar/39Ar and single zircon 207Pb/206Pb measurements. Geol Rdsch 77(3):693–711Google Scholar
  41. Klemm G (1918) Erläuterungen zur geologischen Karte. Großherzogthum Hessen, 1:25 000, Blatt Neunkirchen, 2nd edn. Großherzoglicher Staatsverlag, Darmstadt, p 81Google Scholar
  42. Klemm DD, Weber-Diefenbach K (1975) Zur Genese du Odenwälder Amphibolite, Gneise und Basite. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine imOdenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 141–148Google Scholar
  43. Koglin N, Zeh A, Franz G, Schüssler U, Glodny J, Gerdes A, Brätz H (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Res 55:135–152Google Scholar
  44. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh d Sächs Geol Landesamts 1:1–39Google Scholar
  45. Kreher B (1994) Petrologie und Geochemie der Gabbrointrusionen des Frankensteins (Odenwald). Geol Jb Hessen 122:81–122Google Scholar
  46. Kreuzer H, Harre W (1975) K/Ar-Altersbestimmungen an Hornblenden und Biotiten des Kristallinen Odenwaldes. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 71–77Google Scholar
  47. Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K-L, Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian massif. Tectonophysics 157:149–178Google Scholar
  48. Krohe A (1994) Verformungsgeschichte in der mittleren Kruste eines magmatischen Bogens. Geotekt Forsch 80:1–147Google Scholar
  49. Krohe A, Willner AP (1995) The Odenwald crystalline complex. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 174–181Google Scholar
  50. Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneiss from the Czech and Polish Sudetes (Jizerske hory, Krkonose Mountains and Orlice-Sneznik Complex). Int J Earth Sci 90:304–324Google Scholar
  51. Kupfahl HG, Meisl S, Kümmerle E (1972) Erläuterungen zur Geologischen Karte von Hessen 1:25000 Blatt Nr. 6217 Zwingenberg a. d. Bergstraße. Hessisches Landesamt für Bodenforschung, Wiesbaden, pp 1–276Google Scholar
  52. Linnemann U, Gemlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützer H, Bomback K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153Google Scholar
  53. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd isotopic record. Int J Earth Sci 93:683–705Google Scholar
  54. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, NE Bohemian massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geological Society of America Special Paper, vol 423, pp 61–96Google Scholar
  55. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43Google Scholar
  56. Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154Google Scholar
  57. Linnemann U, Gerdes A, Mandy Hofmann M, Marko L (2013) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278Google Scholar
  58. Linnemann U, Pidal AP, Hofmann M, Drost K, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J, Krause R, Vickers-Rich P, Horak J (2018) A ~ 565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. Int J Earth Sci (Geol Rundsch) 107:885–911Google Scholar
  59. Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) und karbonischer Abkühlungsalter (K–Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75(3):569–583Google Scholar
  60. Ludwig KR (2001) User’s manual for Isoplot/Ex version 2 49, a geochronological toolkit for microsoft excel. Berkley Geochronology Center Special Publication 1a, Berkley CA USAGoogle Scholar
  61. Ludwig KR, Mundil R (2002) Extracting reliable U–Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochim Cosmochim Acta 66:463Google Scholar
  62. Mandl M, Kurz W, Hauzenberger C, Fritz H, Klötzli U, Schuster R (2018) Pre-alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): constraints from in situ LA-ICP-MS U\Pb zircon geochronology. Lithos 296–299:412–430Google Scholar
  63. Massonne H-J (1995) III.C.4 Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe, IGCP 233. Springer, Berlin, pp 132–137Google Scholar
  64. Massonne H-J, Schreyer W (1983) A new experimental phengite barometer and its application to a Variscan subduction zone at the southern margin of the Rhenohercynicum. Terra Abstr 3:187Google Scholar
  65. Matte P (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126:329–374Google Scholar
  66. Matthes S, Okrusch M, Richter P (1972) Zur Migmatitbildung im Odenwald. N Jb Mineral Abh 116:225–267Google Scholar
  67. Meisl S (1990) Metavolcanic rocks in the Northern Phyllite Zone at the southern margin of the Rhenohercynian belt. In: Field guide: mid-German crystalline rise and Rheinisches Schiefergebirge. Int Conf Paleozoic orogens in central Europe, Göttingen Giessen, pp 25–42Google Scholar
  68. Meisl S, Kreuzer H, Höhndorf A (1989) Metamorphose Bedingungen und -Alter des Kristallins am Wartenstein bei Kirn/Nahe. Vortrag, 5. Rundgespräch “Geodynamik des europaischen Variszikums”. Braunschweig 16.-18.11.1989Google Scholar
  69. Molzahn M, Anthes G, Reischmann T (1998) Single zircon Pb/Pb age chronology and isotope systematics of the Rhenohercynian basement. Terra Nostra 98(1):67–68Google Scholar
  70. Murphy JB, Fernández-Suárez J, Jeffries T, Strachan RA (2004a) U–Pb (LA–ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along the northern Gondwanan margin. J Geol Soc Lond 161:243–254Google Scholar
  71. Murphy JB, Pisarevsky SA, Nance D, Keppie JD (2004b) Neoproterozoic-Early Palaeozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci 93:659–682Google Scholar
  72. Okrusch M (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 201–213Google Scholar
  73. Okrusch M, Raumer JV, Matthes S, Schubert W (1975) Mineralfazies und Stellung der Metamorphite im kristallinen Odenwald. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 109–134Google Scholar
  74. Okrusch M, Geyer G, Lorenz J (2011) Sammlung geol Führer 106: Spessart: 386, Berlin (Borntraeger)Google Scholar
  75. Oliver GJH, Corfu F, Krogh TE (1993) U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J. Geol Soc Lond 150:355–369Google Scholar
  76. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and it’s consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundschau 86:2–20Google Scholar
  77. Oncken O, Winterfeld CV, Dittmar U (1999) Accretion of a rifted passive margin: the late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91Google Scholar
  78. Pasteels P, Dore F (1982) Age of the Vire Carolles granite. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 784–790Google Scholar
  79. Peucat JJ (1983) Géochronologie des roches métamorphiques (Rb–Sr and U– Pb). Exemples choisis au Groenland, en Laponie, dans le Massif Armoricain et en Grande Kabylie. Mémoire de la Société Géologique et Minéralogique de Bretagne, p 28Google Scholar
  80. Peucat JJ (1986) Behaviour of Rb–Sr whole rock and U–Pb zircon systems during partial melting as shown in migmatitic gneisses from the St. Malo Massif, NE Brittany, France. J Geol Soc Lond 143:875–886Google Scholar
  81. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220Google Scholar
  82. Raumer vJ (1973) Die mineralfazielle Stellung der Metapelite und Metagrauwacken zwischen Heppenheim und Reichelsheim (Odenwald). N Jb Mineral Abh 118:313–336Google Scholar
  83. Reischmann T, Anthes G, Jaekel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Miner Petrol 72:29–44Google Scholar
  84. Schafft R (1985) Makro- und mikrostrukturelle Untersuchungen der Metamorphen Zone im südlichen Hunsrück. Thesis Univ GöttingenGoogle Scholar
  85. Scholtz H (1934) Die Tektonik des Steinkohlenbeckens im Saar-Nahe-Gebiet und die Entstehungsweise der Saar-Saale-Senke. Z Dtsch Geol Ges 85:316–382Google Scholar
  86. Schubert W (1968) Die Amphibolite des prävaristischen Schieferrahmens im Bergsträsser Odenwald. N Jb Mineral Abh 108:69–110Google Scholar
  87. Schubert W, Lippolt HJ, Schwarz W (2001) Early to middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132Google Scholar
  88. Schulz B (2013) Monazite EMP-Th–U–Pb age pattern in Variscan metamorphic units in the Armorican Massif (Brittany, France). Z Dt Ges Geowiss 164(2):313–335Google Scholar
  89. Siebel W, Eroglu S, Shang CK, Rohrmüller J (2012) Zircon geochronology, elemental and Sr–Nd isotope geochemistry of two Variscan granitoids from the Odenwald-Spessart crystalline complex (Mid-German Crystalline Rise). Mineral Petrol 105:187–200Google Scholar
  90. Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461(1–4):44–59Google Scholar
  91. Söllner F, Köhler H, Müller-Sohnius D (1981) Rb/Sr-Altersbestimmungen an Gesteinen der Münchberger Gneismasse (MM), NE Bayern—Teil 2, Mineraldatierungen. N Jahrb Miner Abh 142(2):178–198Google Scholar
  92. Sommermann A-E, Anderle H-J, Todt W (1994) Das Alter des Quarzkeratophyrs der Krausaue bei Rüdesheim am Rhein (Blatt 6013 Bingen, Rheinisches Schiefergebirge). Geol Jahrb Hessen 122:143–157Google Scholar
  93. Stein E (1996) Untersuchungen zur Genese der Flasergranitoid-Zone des zentralen Odenwaldes—Magmatische und/oder tektonische Gefüge. Z Geol Wiss 24(5/6):573–583Google Scholar
  94. Stein E (2000) Zur Platznahme von Granitoiden—Vergleichende Fallstudien zu Gefügen und Platznahmemechanismen aus den White-Inyo Mountains, California, USA und dem Bergsträsser Odenwald. Geotekt Forsch 93:1–344Google Scholar
  95. Stein E (2001) The geology of the Odenwald crystalline complex. Mineral Petrol 72:7–28Google Scholar
  96. Tait JA, Bachtadse V, Franke W, Soffel H (1997) Geodynamic evolution of the European Variscan fold belt:palaeomagnetic and geological constraints. Geol Rundsch 86:585–598Google Scholar
  97. Tait JA, Schatz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, London, pp 21–34Google Scholar
  98. Teipel U (2003) Obervendischer und Unterordovizischer Magmatismus im Bayerischen Wald: Geochronologische (SHRIMP), geochemische und isotopen-geochemische Untersuchungen an Metamagmatiten aus dem Westteil des Böhmischen Massivs. Münchner Geol Hefte 33:1–98Google Scholar
  99. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338Google Scholar
  100. Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647Google Scholar
  101. Todt WA, Altenberger U, von Raumer J (1995) U-Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geologische Rundschau 84:466–472Google Scholar
  102. Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240Google Scholar
  103. van Breemen O, Henderson J B, Loveridge W D, Thompson P H (1987) U–Pb zircon and monazite geochronology and zircon morphology of granulites and granite from the Thelon Tectonic Zone, Healey Lake and Artillery Lake map areas, NWT. Current research part A, Geological survey of Canada paper, vol 87, no 1A, pp 783–801Google Scholar
  104. Weber K, Behr H-J (1983) Geodynamic interpretation of the mid European Variscides. In: Martin H, Eder FW (eds) Intracontinental fold belts—case studies in the Variscan Belt of Europe and in the Damara Belt in Namibia. Springer, Berlin, pp 427–469Google Scholar
  105. Weber-Diefenbach K (1974) Geochemische Untersuchungen an Biotit-Dioriten, Hornblende-Dioriten und Metamorphiten des mittleren kristallinen Odenwaldes. N Jb Mineral Abh 120:119–146Google Scholar
  106. Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald-Spessart basement, Mid-German crystalline zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42Google Scholar
  107. Will TM, Schulz B, Schmädicke E (2017) The timing of metamorphism in the Odenwald-Spessart basement, Mid-German crystalline zone. Int J Earth Sci 106(5):1631–1649Google Scholar
  108. Will TM, Schmädicke E, Ling X-X, Li X-H, Li Q-L (2018) New evidence for an old idea: geochronological constraints for a paired metamorphic belt in the central European Variscides. Lithos 302–303:278–297Google Scholar
  109. Willner AP, Massone H-J, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German Crystalline Rise. Geol Rundsch 80:369–389Google Scholar
  110. Willner AP, Barr SM, Gerdes G, Massonne HJ, White CE (2013) Origin and evolution of Avalonia: evidence from U–Pb and Lu–Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot-Venn Massif, Belgium. J Geol Soc Lond 170:769–784Google Scholar
  111. Willner AP, Gerdes A, Massonne HJ, van Staal CR, Zagorevski A (2014) Crustal evolution of the Northeast Laurentia Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and during closure of the Iapetus Ocean: U–Pb and Hf isotope evidence from Newfoundland. Geosci Can 41:345–363Google Scholar
  112. Zeh A (1996) Die Druck-Temperatur-Deformations-Entwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). Geotekton Forsch 86:1–214Google Scholar
  113. Zeh A, Gerdes A (2009) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17:254–263Google Scholar
  114. Zeh A, Will TM (2010) The Mid-German crystalline zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 195–220Google Scholar
  115. Zelazniewicz A, Dörr W, Bylina P, Franke W, Franke W, Haack U, Heinisch H, Schastok J, Grandmontagne N, Kulicki C, Haack U, Heinisch H, Schastok J, Kulicki C (2004) The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. Int J Earth Sci (Geol Rundsch) 93:773–781Google Scholar
  116. Ziegler PA (1986) Geodyamic model for the Paleozoic crustal consolidation of Western and Central Europe. Tectonophysics 126:303–328Google Scholar
  117. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Deutsch Geol Ges 150:627–639Google Scholar
  118. Zulauf G, Dörr W, Fiala J, Romano SS (2007) Crete and the Minoan Terranes: age constraints from U–Pb dating of detrital zircons. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collission. Geological Society of America Special Paper, vol 423, pp 401–409Google Scholar
  119. Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2014) Closure of the paleotethys in the external hellenides: constraintsfrom U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res. Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Institute of GeosciencesGoethe UniversityFrankfurt am MainGermany
  2. 2.Institut für MineralogieTU DarmstadtDarmstadtGermany

Personalised recommendations