International Journal of Earth Sciences

, Volume 108, Issue 6, pp 1913–1936 | Cite as

Subsurface granites in the Franconian Basin as the source of enhanced geothermal gradients: a key study from gravity and thermal modeling of the Bayreuth Granite

  • Helga de WallEmail author
  • Anna Schaarschmidt
  • Marion Kämmlein
  • Gerald Gabriel
  • Michel Bestmann
  • Lars Scharfenberg
Original Paper


The Franconian Basin in NE Bavaria is a region of gravity low between the Bohemian Massif in the east and the Kraichgau Terrane in the west. Borehole measurements have identified the northern part of the Franconian Basin as a regional geothermal anomaly and new heat flow calculations give values of  > 100 mW/m2. Distinct negative Bouguer anomalies observed in this basin are modeled as granitic intrusions in the Saxothuringian basement that underlies the Permo-Mesozoic units. The interpretation of gravity gradients, in combination with the filtering of gravity data, gives the possible depth constraints of the intrusive bodies. The resulting depths were cross-checked using microstructural studies of quartz veins in the basement rocks (at > 1341 m depth). The quartz shows structures typical for low-temperature plasticity and we infer a deformation temperature of ca. 300 °C. This indicates a considerable pre-Permian uplift of at least 7 km for parts of the Saxothuringian basement and supports depth estimates from gravity data. The heat supply of granitic intrusions by radiogenic decay is modeled considering several scenarios for the geological conditions recovered by the Obernsees borehole (model for conductive heat transfer). The 1390 m-deep drillhole is in a marginal position to the most-pronounced negative Bouguer anomaly. It could be shown that the Saxothuringian basement, including heat-producing granites (heat production rates: 4–6 μW/m3), covered by the insulating sedimentary rocks (1.35 km of Permian to Lower Jurassic units), can account for the enhanced geothermal gradient (38 °C/km) that were measured in the borehole.


Gravity anomalies Variscan granites Radiogenic heat Thermal modeling Quartz microfabric 



We thank Carlo Dietl (Gesteinslabor Dr. Eberhard Jahns, Heiligenstadt) and Peter Skiba (LIAG Hannover) for discussion. Timo Spörlein, Volker Friedlein, Georg Büttner (LfU Hof) are thanked for their support and provision of core material for our analytical work. We are grateful to Dave Tanner (LIAG Hanover) who helped to improve the text of the manuscript. Funding by the Ministry of Environment of Bavaria State is gratefully acknowledged. We are very thankful to A. Guy and J. Sippel for their helpful and very constructive reviews.


  1. Bader K, Bram K (2001) Der mittelfränkische Gebirgsrücken südlich Nürnberg, Geologischer Rahmen, geophysikalische Untersuchungen und Ergebnisse von Forschungsbohrungen. Geol Jb E 58:113Google Scholar
  2. Bauer W (2000) Geothermische Verhältnisse des Fränkischen Beckens (Nordbayern/Südthüringen). Dissertation Univ Würzburg, p 186Google Scholar
  3. Bauer W, Kämmlein M, Stollhofen H, de Wall H, Drews M (2017) Untersuchung der geothermischen Anomalie in Nordbayern, Erste Ergebnisse und geplante Explorationsmaßnahmen. In: German Geothermal Congress GGC 2017, 12th–14th September 2017, MunichGoogle Scholar
  4. Beardsmore G (2004) The influence of basement on surface heat flow in the Cooper Basin. Explor Geophys 35(4):223–235Google Scholar
  5. Behr HJ, Große S, Heinrichs T, Wolf U (1989) A reinterpretation of the gravity field in the surroundings of the KTB drill site—implications for granite plutonism and terrane tectonics in the Variscan. In: Emmermann R, Wohlenberg J (eds) The German Continental Deep Drilling Program (KTB) Exploration of the deep continental crust. Springer, BerlinGoogle Scholar
  6. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, p 441Google Scholar
  7. Blecha V, Štemprok M (2012) Petrophysical and geochemical characteristics of late Variscan granites in the Karlovy Vary Massif (Czech Republic)—implications for gravity and magnetic interpretation at shallow depths. J Geosci 57:65–85Google Scholar
  8. Bleibinhaus F, Stich D, Simon M, Gebrande H (2003) New results from amplitude preserving prestack depth migration of the Münchberg/Vogtland segment of the MVE deep seismic survey. J Geodyn 35(1–2):33–43Google Scholar
  9. Bosum W, Wonik T (1991) Magnetic anomaly pattern of Central Europe. Tectonophys 195:253–259Google Scholar
  10. Bosum W, Casten U, Fieberg FC, Heyde I, Soffel HC (1997) Three-dimensional interpretation of the KTB gravity and magnetic anomalies. J Geophys Res 102:18307–18321Google Scholar
  11. Buness H, Bram K (2001) Die Muschelkalkoberfläche und die permische Peneplain in Mittelfranken, abgeleitet aus seismischen Messungen. Geol Jb E 58:35–60Google Scholar
  12. Burkhardt H, Haack U, Hahn A, Honarmand H, Stiefel K, Wägerle P, Wilhelm H (1989) Geothermal investigations in the KTB locations Oberpfalz and Schwarzwald. In: Emmermann R, Wohlenberg J (eds) The German Deep Drilling Program (KTB). Springer, Berlin, pp 433–480Google Scholar
  13. Burov E, Jaupart C, Guillou-Frottier L (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J Geophys Res 10:2177Google Scholar
  14. Casten U, Götze HJ, Plaumann S, Soffel HC (1997) Gravity anomalies in the KTB area and their structural interpretation with special regard to the granites of the northern Oberpfalz (Germany). Geol Rundsch 86:79–86Google Scholar
  15. Cercone KR, Deming D, Pollack HN (1996) Insulating effect of coals and black shales in the Appalachian Basin, Western Pennsylvania. Org Geochem 24:243–249Google Scholar
  16. Čermák V, Bodri L (1991) A heat production model of the crust and upper mantle. Tectonophys 194(4):307–323Google Scholar
  17. Clark C, Fitzsimons IC, Healy D, Harley SL (2011) How does the continental crust get really hot? Elements 7(4):235–240Google Scholar
  18. Clauser C, Giese P, Huenges E, Kohl T, Lehmann H, Rybach L, Šafanda J, Wilhelm H, Windloff K, Zoth G (1997) The thermal regime of the crystalline continental crust: implications from the KTB. J Geophys Res 102(B8):18417–18444Google Scholar
  19. de Wall H, Stollhofen H (2016) Erkundung des geologischen Untergrundes in Nordost-Bayern als Grundlage zur Bewertung des geothermischen Potenzials. Abschlussbericht März 2016, GeoZentrum Nordbayern, ErlangenGoogle Scholar
  20. de Wall H, Stollhofen H (2017) Erkundung des geologischen Untergrundes in Nordost-Bayern als Grundlage zur Bewertung des geothermischen Potenzials. Abschlussbericht der Projektverlängerung (3. Jahr), GeoZentrum Nordbayern, ErlangenGoogle Scholar
  21. Derez T, Pennock G, Drury M, Sintubin M (2015) Low-temperature intracrystalline deformation microstructures in quartz. J Struct Geol 71:3Google Scholar
  22. Dietl C, Koyi HA (2000) Formation of tabular plutons—results and implications of centrifuge modeling. J Geosci 53:253–261Google Scholar
  23. Doben K, Doppler G, Freudenberger W, Jerz H, Meyer RFK, Mielke H, Ott WD, Rohrmüller J, Schmidt-Kaler H, Schwerd K, Unger HJ (1996) Tektonische Karte von Bayern 1:1 000 000. In: Erläuterungen zur Geologischen Karte von Bayern 1:500.000. Bayerisches Geologisches Landesamt, MünchenGoogle Scholar
  24. Drews M, Bauer W, Fazlikhani H, Stollhofen H, Kämmlein M, Potten M, Thuro K, de Wall H (2019) Ursachenforschung zur geothermischen Anomalie in Nordbayern. Geotherm Energie 91:10–12Google Scholar
  25. Drury MR (1993) Deformation lamellae in metals and minerals. In: Boland JN, Fitz Gerald JD (eds) Defects and processes in the solid state: Geoscience applications. Elsevier, Amsterdam, pp 195–212Google Scholar
  26. Dunlap WJ, Hirth G, Teyssier C (1997) Thermomechanical evolution of a ductile duplex. Tectonics 16:983–1000Google Scholar
  27. Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432Google Scholar
  28. Enderle U, Schuster K, Prodehl C, Schultze A, Briebach J (1998) The refraction seismic experiment GRANU’95 in the Saxothuringian belt, southeastern Germany. Geophys J Int 133:245–259Google Scholar
  29. Fernández M, Marzá¡n I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophys 291:29–53Google Scholar
  30. Förster A, Förster HJ (2000) Crustal composition and mantle heat flow: implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany). J Geophys Res 105(B12):27917–27938Google Scholar
  31. Förster HJ, Rhede D, Hecht L (2008) Chemical composition of radioactive accessory minerals: implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). N Jb Miner Abh 185(2):161–182Google Scholar
  32. Förster HJ, Romer RL, Gottesmann B, Tischendorf G, Rhede D (2009) Are the granites of the Aue-Schwarzenberg zone (Erzgebirge, Germany) a major source for metalliferous ore deposits? A geochemical, Sr–Nd–Pb isotopic, and geochronological study. N Jb Miner Abh 186(2):163–184Google Scholar
  33. Förster A, Förster HJ, Krentz O (2018) Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany). Int J Earth Sci 107:89–101Google Scholar
  34. Franke W, Stein E (2000) Exhumation of high-grade rocks in the Saxo-Thuringian Belt: geological constraints and geodynamic concepts. Geol Soc Lond Spec Publ 179:337–354Google Scholar
  35. Freudenberger W (2005) Der Keuper in Franken und der Oberpfalz. In: Beutler G, Hauschke N, Nitsch E, Vath U (eds) Stratigraphie von Deutschland IV Keuper, vol 253. Cour Forsch-Inst, Senckenberg, pp 203–213Google Scholar
  36. Freudenberger W, Meyer RF, Schmidt-Kaler H (1996) Gesteinsfolge des Deckgebirges nördlich der Donau und im Molasseuntergrund. In: Freudenberger W, Schwerd K (eds) Erläuterungen zur Geologischen Karte von Bayern 1:500000. Bayerisches Geologisches Landesamt, München, p 329Google Scholar
  37. Freudenberger W, Geyer G, Schröder B (2013) Der Buntsandstein in Bayern (nordwestliches Franken, Bruchschollenland und Randfazies im Untergrund). In: Lepper J, Röhling HG (eds) Deutsche Stratigraphische Kommission: Stratigraphie von Deutschland XI. Buntsandstein. Schriftenreihe der D Ges für Geow 68, pp 547–582Google Scholar
  38. Fuchs HK, Soffel H (1981) Untersuchungen am Westabbruch der Böhmischen Einheit im oberfränkisch-oberpfälzischen Bruchschollenland mit Hilfe der Gravimetrie. N Jb Geol Paläont Mh 193–210Google Scholar
  39. Gabriel G, Vogel D, Scheibe R, Wonik T, Pucher R, Krawczyk C, Lindner H (2010) Anomalien des erdmagnetischen Totalfeldes der Bundesrepublik Deutschland 1:1.000.000. GeoCenter Scientic Cartography, FilderstadtGoogle Scholar
  40. Gebrande H, Bopp M, Neurieder P, Schmidt T (1989) Crustal structure in the surroundings of the KTB drill site as derived from refraction and wide-angle seismic observations. In: Emmermann R, Wohlenberg J (eds) The German Continental Deep Drilling Program (KTB). Exploration of the Deep Continental Crust. Springer, BerlinGoogle Scholar
  41. Geol Survey Bavaria (2004) Grundgebirge (Prä-Perm)—Verbreitung und Tiefenlage, 1:500 000Google Scholar
  42. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetic. Geophysics 53:1096–1108Google Scholar
  43. Groshong RH (1988) Low-temperature deformation mechanisms and their interpretation. Geol Soc Am Bull 100(9):1329–1360Google Scholar
  44. Grosse S, Behr HJ, Edel JB, Heinrichs T (1992) The gravity field along the central segment of the EGT. Tectonophys 207:97–121Google Scholar
  45. Gudden H (1981) Über Thermal-Mineralwasser-Bohrungen im Coburger Umland. Jahresb Mitt Oberrheinischen Geol Vereins 63:229–252Google Scholar
  46. Gudden H, Schmid H (1985) Die Forschungsbohrung Obernsees—Konzeption, Durchführung und Untersuchung der Metallführung. Geol Bavarica 88:5–21Google Scholar
  47. Guy A, Edel JB, Schulmann K, Tomek C, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collision orogens. Lithos 124:144–157Google Scholar
  48. Hecht L, Vigneresse JL (1999) A multidisciplinary approach combining geochemical, gravity and structural data: implications for pluton emplacement and zonation. Geol Soc Lond Spec Publ 168:95–110Google Scholar
  49. Hecht L, Vigneresse JL, Morteani G (1997) Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol Rundsch 86:S93–S109Google Scholar
  50. Heinrichs T, Giese P, Bankwitz E (1994) DEKORP 3/MVE-90 (West) Preliminary geological interpretation of a deep near-vertical reflection profile between the Rhenish and the Bohemian Massifs, Germany. Z Geol Wiss 22:771–801Google Scholar
  51. Helmkampf K (2006) Profilvergleich und sedimentologische Entwicklung im Umkreis der Forschungsbohrungen Spitzeichen 1 und Lindau 1. Geol Bavarica 109:63–94Google Scholar
  52. Hilgers C, Koehn D, Bons PD, Urai JL (2001) Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J Struct Geol 23:873–885Google Scholar
  53. Hinze W, Von Frese R, Saad A (2013) Gravity and magnetic exploration: principles, practices, and applications. Cambridge University Press, CambridgeGoogle Scholar
  54. Hirschmann G, Duyster J, Harms U, Kontny A, Lapp M, de Wall H, Zulauf G (1997) The KTB superdeep borehole: petrography and structure of a 9-km-deep crustal section. Geol Rundsch 86:S3–S14Google Scholar
  55. Hofmann Y (2003) Gravimetrische und geodynamische Modellierungen in der Schwarmbeben-Region Vogtland/NW-Böhmen. Dissertation Univ Jena, p 151Google Scholar
  56. Hofmann Y, Jahr T, Jentzsch G (2003) Three-dimensional gravimetric modeling to detect the deep structure of the region Vogtland/NW-Bohemia. J Geodyn 35:209–220Google Scholar
  57. Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller R, Brückl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on data from CELEBRATION 2000 experiment. J Geophys Res 110:B11305Google Scholar
  58. Huston DL, Ayling B, Connolly D, Lewis B, Mernagh TP, Schofield A, Skirrow RS, van der Wielen SE (2010) An assessment of the uranium and geothermal potential of north Queensland, Geoscience Australia, Record 2010/14Google Scholar
  59. Hutton DHW (1988) Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Earth Environ Sci Trans R Soc Edinb 79:245–255Google Scholar
  60. Kalakay TJ, John BE, Lageson DR (2001) Fault-controlled pluton emplacement in the Sevier fold-and-thrust belt of southwest Montana, USA. J Struct Geol 23:1151–1165Google Scholar
  61. Kämmlein M, Bauer W, Stollhofen H (2017) New thermophysical data pool for NE-Bavaria reveals exceptionally high local heat fluxes. In: German Geothermal Congress GGC 2017, 12th—14th September 2017, MunichGoogle Scholar
  62. Kosakowski G, Kunert V, Clauser C, Franke W, Neugebauer HJ (1999) Hydrothermal transients in Variscan crust: paleo-temperature mapping and hydrothermal models. Tectonophys 306:325–344Google Scholar
  63. Krawczyk CM, Stein E, Choi S, Oettinger G, Schuster K, Götze HJ, Haak V, Oncken O, Prodehl C, Schulze A (2000) Geophysical constraints on exhumation mechanisms of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone. Geol Soc Lond Spec Publ 179:303–322Google Scholar
  64. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision, vol 423. Geological Society of America, Washington, pp 153–172Google Scholar
  65. Kunert V, Röll S, Rotthaus B, Franke W (1998) Heat Advection in a fault zone—the case of the Frankenwald Transverse Zone. Acta Univ Carolinae Geol 42(2):293–294Google Scholar
  66. Ledésert B, Hébert RL (2012) The Soultz-sous-Forêts enhanced geothermal system: a granitic basement used as a heat exchanger to produce electricity. In: Mitrovic J (ed) Heat exchangers: basics design applications. InTech, London, p 586Google Scholar
  67. Leibniz-Institut für Angewandte Geophysik (2010) Schwerekarte der Bundesrepublik Deutschland 1:1.000.000, Bouguer-Anomalien. GeoCenter Scientific Cartography, StuttgartGoogle Scholar
  68. Linnemann U, Romer RL (eds) (2010) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, p 485Google Scholar
  69. Lüschen E, Görne S, von Hartmann H, Thomas R, Schulz R (2015) 3D seismic survey for geothermal exploration in crystalline rocks in Saxony, Germany. Geophys Prospect 63:975–989Google Scholar
  70. McLaren S, Sandiford M, Hand M (1999) High radiogenic heat–producing granites and metamorphism—an example from the western Mount Isa inlier, Australia. Geology 27:679–682Google Scholar
  71. McLaren S, Sandiford M, Hand M, Neumann N, Wyborn L, Bastrakova I (2003) The hot southern continent, Heat flow and heat production in Australian Proterozoic terranes. In: Hillis RR, Muller D (eds) Evolution and dynamics of the Australian Plate, vol 22. Geological Society of Australia, Hornsby, pp 151–161Google Scholar
  72. Milsom J (2007) Field geophysics, vol 25. Wiley, New YorkGoogle Scholar
  73. Morelli C, Gantar C, Honkasalo T, McConnell RK, Tanner JG, Szabo B, Uotila U, Whalen CT (1974) The International Gravity Standardization Net 1971 (IGSN71). Int Ass Geodesy Sp Pub No. 4, ParisGoogle Scholar
  74. Müller M (1994) Neue Vorstellungen zur Entwicklung des Nordostbayerischen Permokarbon-Trogs aufgrund reflexionsseismischer Messungen in der Mittleren Oberpfalz. Geol Bl NO Bayern 44(3–4):195–224Google Scholar
  75. Nettleton LL (1940) Geophysical prospecting for oil. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  76. Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. GSA Bull 107:1356–1380Google Scholar
  77. Peterek A, Rauche H, Schröder B, Franzke H-J, Bankwitz P, Bankwitz E (1997) The late-and post-Variscan tectonic evolution of the western border fault zone of the Bohemian massif (WBZ). Geol Rundsch 86:191–202Google Scholar
  78. Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673Google Scholar
  79. Pribnow D, Schellschmidt R (2000) Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophys Res Lett 27:1957–1960Google Scholar
  80. Rauen A, Huenges E, Bücker Ch, Wolter KE, Wienand J (1990) Tiefbohrung KTB-Oberpfalz VB, Ergebnisse der geowissenschaftlichen Bohrungsbearbeitung im KTB-Feldlabor (Windischeschenbach), Teufenbereich von 3500 bis 4000.1 m, KTB-Report 90-2 D1Google Scholar
  81. Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite, vol 78. Geological Bavarica, MünchenGoogle Scholar
  82. Röckel L, Stober I (2017) Die neue Tiefbohrung Weißenstadt im Granit des Fichtelgebirges. Grundwasser 22:165–173Google Scholar
  83. Romer RL, Förster HJ, Štemprok M (2010) Age constraints for the late-Variscan magmatism in the Altenberg-Teplice Caldera (Eastern Erzgebirge/Krušné hory). N Jb Miner Abh 187(3):289–305Google Scholar
  84. Sandiford M, Hand M, McLaren S (1998) High geothermal gradient metamorphism during thermal subsidence. Earth Planet Sci Lett 163:149–165Google Scholar
  85. Schaarschmidt A (2017) Geochemical and structural evolution of quartz veins in basement and foreland setting related to the Bavarian Pfahl system. Master thesis Univ Erlangen-Nuremberg, p 55Google Scholar
  86. Schäfer F, Oncken O, Kemnitz H, Romer RL (2000) Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone). Geol Soc Lond Spec Publ 179:281–302Google Scholar
  87. Scharfenberg L, de Wall H (2016) Natürlich Gammastrahlung von Graniten in der Oberpfalz (Nordost Bayern)—Vergleich von aerophysikalischen und in situ gammaspektrokopischen Messungen. Geol Bl NO Bayern 66:205–227Google Scholar
  88. Scharfenberg L, de Wall H, Bauer W (2016) In situ gamma radiation measurements on Variscan granites and inferred radiogenic heat production, Fichtelgebirge, Germany. Z Dt Geol Ges 167:19–32Google Scholar
  89. Scheck-Wenderoth M, Cacace M, Maystrenko YP, Cherubini Y, Noack V, Kaiser BO, Sippel J, Lewerenz B (2014) Models of heat transport in the Central European basin system: effective mechanisms at different scales. Mar Pet Geol 55:315–331Google Scholar
  90. Schmid SM, Handy MR (1991) Towards a genetic classification of fault rocks: geological usage and tectonophysical implications. In: Müller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology. Academic Press, London, pp 339–361Google Scholar
  91. Schmidt S, Plonka C, Götze HJ, Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 59:1046–1051Google Scholar
  92. Schröder B (1987) Inversion tectonics along the western margin of the Bohemian Massif. Tectonophys 137:93–100Google Scholar
  93. Schröder B, Ahrendt H, Peterek A, Wemmer K (1997) Post-Variscan sedimentary record of the SW margin of the Bohemian massif: a review. Geol Rundsch 86:178–184Google Scholar
  94. Sedlák J, Gnojek I, Zabadal S, Farbisz J, Cwojdzinski S, Scheibe R (2007) Geological interpretation of a gravity low in the central part of the Lugian Unit (Czech Republic, Germany and Poland). J Geosci 52:181–198Google Scholar
  95. Siebel W (1995) Anticorrelated Rb–Sr and K–Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120(2):197–211Google Scholar
  96. Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian Massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch 86:45–63Google Scholar
  97. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporite zircon ages on the emplacement of redwitzites and granites in NE—Bavaria. Int J Earth Sci (Geol Rundsch) 92:36–53Google Scholar
  98. Siebel W, Shang CK, Presser V (2010) Permo-Carboniferous magmatism in the Fichtelgebirge: dating the youngest intrusive pulse by U-Pb, 207Pb/206Pb and 40Ar/39Ar geochronology. Z Geol Wiss 38(2–3):85–98Google Scholar
  99. Siegel C, Bryan SE, Purdy D, Gust D, Allen C, Uysal T, Champion D (2012) A new database compilation of whole-rock chemical and geochronological data of igneous rocks in Queensland: a new resource for HDR geothermal resource exploration. In: Rudd A (ed) Proceedings of the 2011 Australian Geothermal Energy Conference, Geosci Austr, Sydney, pp 239–244Google Scholar
  100. Skiba P, Gabriel G, Scheibe R, Seidemann O (2010) Schwerekarte der Bundesrepublik Deutschland 1:1.000.000. Leibniz-Institut für Angewandte Geophysik, HannoverGoogle Scholar
  101. Smith RA (1959) Some depth formulae for local magnetic and gravity anomalies. Geophys Prospect 7(1):55–63Google Scholar
  102. Stettner G, Salger M (1985) Das Schiefergebirge in der Forschungsbohrung Obernsees. Geol Bavarica 88:49–55Google Scholar
  103. Stipp M, Tullis J (2003) The recrystallised grain size piezometer for quartz. Geophys Res Lett 30:2088Google Scholar
  104. Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J Struct Geol 24:1861–1884Google Scholar
  105. Stipp M, Tullis J, Scherwath M, Behrmann J (2010) A new perspective on paleopiezometry: dynamically recrystallized grain size distributions indicate mechanism changes. Geology 38:759–762Google Scholar
  106. Stöckhert B, Brix MR, Kleinschrodt R, Hurford AJ, Wirth R (1999) Thermochronometry and microstructures of quartz-a comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition. J Struct Geol 21:351–369Google Scholar
  107. Tanner DC, Behrmann JH, Oncken O, Weber K (1998) Three-dimensional retro-modelling of transpression on a linked fault system: the Upper Cretaceous deformation on the western border of the Bohemian Massif, Germany. Geol Soc Lond Spec Publ 135:275–287Google Scholar
  108. Taylor GK (2007) Pluton shapes in the Cornubian Batholith: new perspectives from gravity modeling. J Geol Soc Lond 164:525–528Google Scholar
  109. Thomas R, Klemm W (1994) Microthermometric study of silicate melt ininclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753–1765Google Scholar
  110. Tillmanns M, Simon M, Zitzelserger A, Gebrande H (1996) Neue Seismographien aus dem Umwelt der Kontinentalen Tiefbohrung (KTB), Oberpfalz. Geol Bavarica 101:291–314Google Scholar
  111. Trepmann CA, Stöckhert B, Dorner D, Moghadam RH, Küster M, Röller K (2007) Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation, an experimental study. Tectonophys 442(1–4):83–104Google Scholar
  112. Trusheim F (1964) Über den Untergrund Frankens—Ergebnisse von Tiefbohrungen in Franken und Nachbargebieten. Geol Bavarica 54:92Google Scholar
  113. Trzebski R, Behr HJ, Conrad W (1997) Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol Rundsch 86:S64–S78Google Scholar
  114. Tullis J, Yund RA (1987) Transition from cataclastic flow to dislocationcreep of feldspar: mechanisms and microstructures. Geology 15:606–609Google Scholar
  115. Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Hobbs BE, Heard HC (eds) Mineral and rock deformation: laboratory studies Geophysics Monograph, vol 36. Americal Geophysical Union, Washington, pp 161–199Google Scholar
  116. van Daalen M, Heilbronner R, Kunze K (1999) Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition. Tectonophys 303:83–107Google Scholar
  117. Verdoya M, Pasquale V, Chiozzi P, Kukkonen IT (1998) Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean). Tectonophys 291:63–75Google Scholar
  118. Vernooij MGC, Langenhorst F (2005) Experimental reproduction of tectonic de-formation lamellae in quartz and comparison to shock-induced planar deformation features. Meteor Planet Sci 40:1353–1361Google Scholar
  119. Voll G (1976) Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina nappe, Swiss Alps, and its geological significance. Schw Miner Petrogr Mitt 56:641–647Google Scholar
  120. Wagner GA, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B, Stöckhert B, Wemmer K, Zulauf G, Ahrendt H, Bischoff R, Heijl E, Jacobs J, Menzel D, Nand L, Van den Haute P, Vercoutere C, Welzel B (1997) Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8):18221–18232Google Scholar
  121. White S (1976) The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Philos Trans R Soc Lond Ser A 283(1312):69–86Google Scholar
  122. White S (1977) Geological significance of recovery and recrystallization processes in quartz. Tectonophys 39(1–3):143–170Google Scholar
  123. Wurm A (1929) Die Nürnberger Tiefbohrungen: ihre wissenschaftliche und praktische Bedeutung. Bayerisches Oberbergamt, MünchenGoogle Scholar
  124. Žák J, Verner K, Janousek V, Holub FV, Kachlik V, Finger F, Hajna J, Tomek F, Vondrovic L, Trubac J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. Geol Soc Lond Spec Publ 405:169–196Google Scholar
  125. Ziegler PA (1990) Collision related intra-plate compression deformations in Western and Central Europe. J Geodyn 11:357–388Google Scholar
  126. Zulauf G, Duyster J (1997) Supracrustal intraplate thickening of Variscan basement due to Alpine foreland compression: results from the superdeep well KTB (Bohemian Massif, Germany). Tectonics 16:730–743Google Scholar
  127. Zulauf G, Maier M, Stöckhert B (1997) Depth of intrusion and thermal modeling of the Falkenberg granite (Oberpfalz, Germany). Geol Rundsch 86(1):S87–S92Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.GeoZentrum NordbayernFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Leibniz-Institut für Angewandte GeophysikHannoverGermany
  3. 3.Department f. Geodynamik u. Sedimentologie, Department f. LithosphärenforschungUniversität WienViennaAustria

Personalised recommendations