The enigmatic ascent of Ca-sulphate rocks from a deep dense source layer: evidences of hydration diapirism in the Lesina Marina area (Apulia, southern Italy)

  • Vincenzo FestaEmail author
  • Rosa Anna Fregola
  • Pasquale Acquafredda
  • Francesco De Giosa
  • Alessandro Monno
  • Gennaro Ventruti
Original Paper


In the Lesina Marina village area, the cropping out gypsum rocks, that rose up from the deep and thick Upper Trias Burano Fm anhydrite layer, have been analyzed to investigate the trigger mechanism for their ascent. In this regard, we focus on the anhydrite-to-gypsum transformation starting from the deep source layer. Indeed, petrographic observations of the widespread corroded anhydrite crystals embedded in these gypsum rocks revealed unequivocal evidences of the anhydrite-to-gypsum transformation. In addition, and referring to gypsum, microstructural features indicate that ductile deformation mechanisms initially operated under higher temperature conditions. This temperature should be close to 107 °C, namely the value of the upper temperature limit of stability of gypsum from Lesina Marina, above which it starts to transform and dehydrate, as revealed by microthermometry heating/dehydration experiments combined with micro-Raman analyses. All these evidences are in favor of the dramatic density decrease and volume increase due to anhydrite-to-gypsum transformation by hydration in the deep source layer; these variations of physical conditions, triggered by hydration, promoted diapirism of the gypsum mass, in other words “hydration diapirism”. As revealed by seismic lines interpretation, the diapirism, which gave rise to the Lesina diapir, occurred during Plio-Pleistocene and was genetically related to the Lesina graben-type structure. Hydration at depth was favored by the downward circulation of water-rich fluids channeled in faults, and the gypsum mass used the weakened zone of the southern fault to pierce the overlying Mesozoic and Tertiary sediments.


Lesina diapir Anhydrite–gypsum transformation Deformation microstructures Microthermometry Micro-Raman spectroscopy Seismic profiles 



We are grateful to the reviewers V. Pascucci and P. Xypolias, whose comments and suggestions helped us to improve the present paper. The Editor-in-Chief W.-C. Dullo is thanked very much for the editorial management of the manuscript. This study was financially supported by “Convenzione tra Autorità di Bacino della Puglia e Dipartimento Geomineralogico dell’Università degli Studi di Bari per studi petrografici e mineralogici, oltre che geologico-strutturali, nell’area di Lesina Marina (FG)—2009” research funds, to VF. RAF acknowledges the research funding by University of Bari Aldo Moro and PONa3-00369 SISTEMA. We are grateful to Edison and ENI that provided us, confidentially, some seismic lines; these companies are also thanked to have formally authorized the publishing of the seismic profiles shown in the present paper.


  1. Amendolagine M, Dell’Anna L, Ventriglia U (1964) Le rocce ignee alla Punta delle Pietre Nere presso Lesina (Provincia Foggia). Period Miner 33:337–395Google Scholar
  2. Bally AW, Burbi L, Cooper C, Ghelardoni R (1986) Balanced sections and seismic reflection profiles across the Central Apennines. Mem Soc Geol Ital 35:257–310Google Scholar
  3. Bernoulli D (2001) Mesozoic-tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In: Vai GB, Martini IP (eds) Anatomy of an orogen: The Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp 307–325CrossRefGoogle Scholar
  4. Bigazzi G, Laurenzi MA, Principe C, Brocchini D (1996) New geochronological data on igneous rocks and evaporites of the Pietre Nere Point (Gargano peninsula, southern Italy). Bull Soc Geol Ital 115:439–448Google Scholar
  5. Blankinsop T (2002) Deformation microstructures and mechanisms in minerals and rocks. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. Bosellini A, Morsilli M, Neri C (2000) The eastern margin of the Apulian Platform: The Gargano transect. Guide Book, FerraraGoogle Scholar
  7. Butscher C, Huggenberger P, Zechner E (2011) Impact of tunneling on regional groundwater flow and implications for swelling of clay-sulfate rocks. Eng Geol 117:198–206CrossRefGoogle Scholar
  8. Carella R (1963) Eruttivi di S. Giovanni in Pane e della Punta delle Pietre Nere (Gargano). Bull Soc Geol Ital 82(1):97–109Google Scholar
  9. Chang LLY, Howie RA, Zussman J (1998) Rock-forming minerals, volume 5B, non-silicates: sulphates, carbonates, phosphates, halides, 2nd edn. The Geological Society, LondonGoogle Scholar
  10. Chio CH, Sharma SK, Muenow DW (2004) Micro-Raman studies of gypsum in the temperature range between 9 and 373 K. Am Miner 89:390–395CrossRefGoogle Scholar
  11. Ciaranfi N, Pieri P, Ricchetti G (1988) Note alla Carta Geologica delle Murge e del Salento (Puglia centromeridionale). Mem Soc Geol Ital 41:449–460Google Scholar
  12. Cippitelli G (2007) The CROP-04 seismic profile: interpretation and structural setting of the Agropoli-Barletta Geotraverse. B Soc Geol Italal Special Issue 7:267–281Google Scholar
  13. Cotecchia V, Canitano A (1954) Sull’affioramento delle Pietre Nere al Lago di Lesina. B Soc Geol Itala 73:1–19Google Scholar
  14. D’Argenio B (1974) Le piattaforme carbonatiche periadriatiche: una rassegna di problemi nel quadro geodinamico mesozoico dell’area mediterranea. Mem Soc Geol Ital 13(Supplemento 2):137–159Google Scholar
  15. De Fino M, La Volpe L, Piccarreta G (1983) Mafic minerals from Punta delle Pietre Nere subvolcanites (Gargano, Southern Italy): their petrological significance. Tscher Miner Petrogr 32(1):69–78CrossRefGoogle Scholar
  16. De Paola N, Collettini C, Trippetta F, Barchi MR, Minelli G (2007) A mechanical model for complex fault patterns induced by evaporite dehydration and cyclic changes in fluid pressure. J Struct Geol 29:1573–1584CrossRefGoogle Scholar
  17. De Paola N, Collettini C, Faulkner DR, Trippetta F (2008) Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 27(TC4017):1–21Google Scholar
  18. della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp 65–76CrossRefGoogle Scholar
  19. El Tabakh M, Schreiber BC, Warren JK (1998) Origin of fibrous gypsum in the Newark Rift Basin. East N Am J Sediment Res 68(1):88–99CrossRefGoogle Scholar
  20. Festa V, Caggianelli A, Krhul JH, Liotta D, Prosser G, Gueguen E, Paglionico A (2006) Late-Hercynian shearing during crystallization of granitoid magmas (Sila massif, southern Italy): regional implications. Geodin Acta 19(3–4):185–195CrossRefGoogle Scholar
  21. Festa V, Langone A, Caggianelli A, Rottura A (2010) Dike magmatism in the Sila Grande (Calabria, southern Italy): evidence of Pennsylvanian-Early Permian exhumation. Geosphere 6(5):549–566CrossRefGoogle Scholar
  22. Festa V, Teofilo G, Tropeano M, Sabato L, Spalluto L (2014) New insights on diapirism in the Adriatic Sea: the Tremiti salt structure (Apulia offshore, southeastern Italy). Terra Nova 26:169–178CrossRefGoogle Scholar
  23. Festa V, Tripaldi S, Siniscalchi A, Acquafredda P, Fiore A, Mele D, Romano G (2016) Geoelectrical resistivity variations and lithological composition in coastal gypsum rocks: a case study from the Lesina Marina area (Apulia, southern Italy). Eng Geol 202:163–175CrossRefGoogle Scholar
  24. Geletti R, Del Ben A, Busetti M, Ramella R, Volpi V (2008) Gas seeps linked to salt structures in the Central Adriatic Sea. Basin Res 20:473–487CrossRefGoogle Scholar
  25. Graham R, Jackson M, Pilcher R, Kilsdonk B (2012) Allochthonous salt in the sub-Alpine fold–thrust belt of Haute Provence, France. Geol Soc Spec Publ 363:595–615CrossRefGoogle Scholar
  26. Grandić S, Biancone M, Samarzija J (2002) Geophysical and stratigraphic evidence of the Adriatic Triassic rift. Mem Soc Geol Ital 57:315–325Google Scholar
  27. Holliday DW (1970) The petrology of secondary gypsum rocks: a review. J Sediment Petrol 40(2):734–744Google Scholar
  28. Hoyos M, Doblas M, Sánchez-Moral S, Cañaveras JC, Ordoñez S, Sesé C, Sanz E, Mahecha V (1996) Hydration diapirism: a climate-related initiation of evaporite mounds in two continental Neogene basins of central Spain. Geol Soc Spec Publ 100:49–63CrossRefGoogle Scholar
  29. Hudec R, Jackson MPA (2007) Terra infirma: understanding salt tectonics. Earth Sci Rev 82:1–28CrossRefGoogle Scholar
  30. Kamberis E, Sotiropoulos S, Aximniotou O, Tsaila-Monopoli S, Ioakim C (2000) Late Cenozoic deformation of the gavrovo and ionian zones in NW Peloponnesos (Western Greece). Ann Geofis 43:905–919Google Scholar
  31. Kloprogge JT, Frost RL (2000) Raman spectroscopy at 77 K of natural gypsum CaSO4·2H2O. J Mater Sci Lett 19:229–231CrossRefGoogle Scholar
  32. Kokinou E, Kamberis E, Vafidis A, Monopolis D, Ananiadis G, Zelilidis A (2005) Deep seismic reflection data from offshore western Greece: a new crustal model for the Ionian Sea. J Petrol Geol 28:185–202CrossRefGoogle Scholar
  33. Kokkalas S, Kamberis E, Xypolias P, Sotiropoulos S, Koukouvelas I (2013) Coexistence of thin- and thick-skinned tectonics in Zakynthos area (western Greece): insights from seismic sections and regional seismicity. Tectonophysics 597–598:73–84CrossRefGoogle Scholar
  34. Liu Y, Wang A, Freeman JJ (2009) Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite. In: 40th Lunar and Planetary Science Conference 2128.pdf, The Woodlands, TXGoogle Scholar
  35. Lugli S (2001) Timing of post-depositional events in the Burano formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum ± anhydrite transitions and carbonate metasomatism. Sediment Geol 140:107–122CrossRefGoogle Scholar
  36. Martinis B, Pieri M (1964) Alcune notizie sulla formazione evaporitica del Triassico superiore nell’Italia centrale e meridionale. Mem Soc Geol Ital 4:649–678Google Scholar
  37. Masrouhi A, Bellier O, Koyi H (2014) Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin. Int J Earth Sci 103:881–900CrossRefGoogle Scholar
  38. Murray RC (1964) Origin and diagenesis of gypsum and anhydrite. J Sediment Petrol 34:512–523Google Scholar
  39. Nicolai C, Gambini R (2007) Structural architecture of the Adria platform-and-basin system. Bull Soc Geol Ital Special Issue 7:21–37Google Scholar
  40. Pascucci V, Gibling MR, Williamson MA (1999) Seismic stratigraphic analysis of Carboniferous strata on the Burin Platform, offshore Eastern Canada. Bull Can Petrol Geol 47(3):298–316Google Scholar
  41. Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, BerlinGoogle Scholar
  42. Posenato R, De Fino M, La Volpe L, Piccarreta G (1994) L’affioramento del Trias superiore delle Pietre Nere (calcari e gessi) e i prodotti del vulcanismo basico paleogenico. In: Geologia delle aree di avampaese, Guida all'escursione pre-congressuale (77th Congress of the Italian Geological Society, Bari, 23 September–1 October 1994). Italian Geological Society, Bari, pp 19–23Google Scholar
  43. Prasad PSR, Pradhan A, Gowd TN (2001) In-situ micro-Raman investigation of dehydration mechanism in natural gypsum. Curr Sci India 80(9):1203–1207Google Scholar
  44. Prieto-Taboada N, Gómez-Laserna O, Martínez-Arkarazo I, Olazabal MÁ, Madariaga JM (2014) Raman spectra of the different phases in the CaSO4–H2O system. Anal Chem 86:10131–10137CrossRefGoogle Scholar
  45. Quintà A, Tavani S, Roca E (2012) Fracture pattern analysis as a tool for constraining the interaction between regional and diapir-related stress fields: Poza de la Sal Diapir (Basque Pyrenees, Spain). Geol Soc Spec Publ 363:521–532CrossRefGoogle Scholar
  46. Refice A, Pasquariello G, Bovenga F, Festa V, Acquafredda P, Spilotro G (2016) Investigating uplift in Lesina Marina (Southern Italy) with the aid of persistent scatterer SAR interferometry and in situ measurements. Environ Earth Sci 75(243):1–13Google Scholar
  47. Ricchetti G, Ciaranfi N, Luperto Sinni E, Mongelli F, Pieri P (1988) Geodinamica ed evoluzione sedimentaria e tettonica dell’Avampaese Apulo. Mem Soc Geol Ital 41:57–82Google Scholar
  48. Rowan MG, Lawton TF, Giles KA, Ratliff RA (2003) Near-salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: a general model for passive diapirism. Am Assoc Petrol Geol Bull 87:733–756Google Scholar
  49. Rubinat M, Ledo J, Roca E, Rosell O, Queralt P (2010) Magnetotelluric characterization of a salt diapir: a case study on Bicorb-Quesa Diapir (Prebetic Zone, SE Spain). J Geol Soc London 167:145–153CrossRefGoogle Scholar
  50. Santantonio M, Scrocca D, Lipparini L (2013) The Ombrina-Rospo plateau (Apulian Platform): evolution of a carbonate platform and its margins during the Jurassic and Cretaceous. Mar Petrol Geol 42:4–29CrossRefGoogle Scholar
  51. Saunders JA, Thomas RC (1996) Origin of ‘exotic’ minerals in Mississippi salt dome cap rocks: results of reaction-path modeling. Appl Geochem 11:667–676CrossRefGoogle Scholar
  52. Schreiber BC, Helman ML (2005) Criteria for distinguishing primary evaporite features from deformation features in sulfate evaporites. J Sediment Res 75:525–533CrossRefGoogle Scholar
  53. Scisciani V, Calamita F (2009) Active intraplate deformation within Adria: examples from the Adriatic region. Tectonophysics 476:57–72CrossRefGoogle Scholar
  54. Scrocca D (2006) Thrust front segmentation induced by differential slab retreat in the Apennines (Italy). Terra Nova 18:154–161CrossRefGoogle Scholar
  55. Seni SJ, Jackson MPA (1983) Evolution of salt structures, east Texas Diapir Province, Part 1: sedimentary record of Halokinesis. Am Assoc Petrol Geol Bull 67(8):1219–1244Google Scholar
  56. Spalluto L, Pieri P, Ricchetti G (2005) Le facies carbonatiche di piattaforma interna del Promontorio del Gargano: implicazioni paleoambientali e correlazioni con la coeva successione delle Murge (Italia Meridionale, Puglia). Bull Soc Geol Ital 124:675–690Google Scholar
  57. Tropeano M, Sabato L (2000) Response of Plio-Pleistocene mixed bioclastic–lithoclastic temperate-water carbonate systems to forced regressions: the Calcarenite di Gravina Formation, Puglia, SE Italy. Geol Soc Spec Publ 172:217–243CrossRefGoogle Scholar
  58. Trude J, Graham R, Pilcher R (2012) Salt-related structures on the Bristol Channel coast, Somerset (UK). In: Alsop GI, Archer SG, Hartley AJ (eds) Salt Tectonics, Sediments and Prospectivity, vol 363. Geological Society of London, London, pp 533–544Google Scholar
  59. Trudgill BD (2011) Evolution of salt structures in the northern Paradox Basin: controls on evaporite deposition, salt wall growth and supra-salt stratigraphic architecture. Basin Res 23:208–238CrossRefGoogle Scholar
  60. Underhill JR (1988) Triassic evaporites and Plio-Quaternary diapirism in western Greece. J Geol Soc London 145:269–282CrossRefGoogle Scholar
  61. Vernon RH (2004) A practical guide to rock microstructures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. ViDEPI (2015) Progetto ViDEPI: Visibilità dei dati afferenti all’attività di esplorazione petrolifera in Italia (last upgrade). Accessed July 2018
  63. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187CrossRefGoogle Scholar
  64. Wrigley R, Hodgson N, Esestime P (2015) Petroleum geology and hydrocarbon potential of the Adriatic Basin offshore Croatia. J Petrol Geol 38(3):301–316CrossRefGoogle Scholar
  65. Yamamoto H, Kennedy GC (1969) Stability relations in the system CaSO4–H2O at high temperatures and pressures. Am J Sci 267A:550–557Google Scholar
  66. Zappaterra E (1990) Carbonate paleogeographic sequences of the periadriatic region. Bull Soc Geol Ital 109:5–20Google Scholar
  67. Zappaterra E (1994) Source-rock distribution model of the Periadriatic region. Am Assoc Petrol Geol Bull 78:333–354Google Scholar
  68. Zelilidis A, Kontopoulos N, Avramidis P, Piper DJW (1998) Tectonic and sedimentological evolution of the Pliocene–Quaternary basins of Zakynthos island, Greece: case study of the transition from compressional to extensional tectonics. Basin Res 10:393–408CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra e GeoambientaliUniversità degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.Environmental Surveys S.r.l. (ENSU), Spin-Off dell’Università degli Studi di Bari “Aldo Moro”TarantoItaly

Personalised recommendations