International Journal of Earth Sciences

, Volume 108, Issue 6, pp 1817–1834 | Cite as

Restoring the source-to-sink relationships in the Paleogene foreland basins in the Central and Southern Alps (Switzerland, Italy, France): a detrital zircon study approach

  • Gang Lu
  • Andrea Di Capua
  • Wilfried WinklerEmail author
  • Meinert Rahn
  • Marcel Guillong
  • Albrecht von Quadt
  • Sean D. Willett
Original Paper


Late Paleogene syn-tectonic magmatic products are known from sandstones contained in the North Alpine (NAFB) and South Alpine (SAFB) foreland basins and in the South Alpine pelagic Trento Basin. The generally turbiditic and mass-flow deposits grade up from marly hemipelagic deeper water series. The source and amount of the reworked volcanic materials have been in debate for a long time. As a proxy for the magma-derived input we use the U–Pb geochronology and geochemistry [176Hf/177Hf(t) and Eu/Eu* ratios] of detrital zircons, and evaluate their temporal and genetic relationships with potential volcanic sources in the Periadriatic magmatic systems (Adamello, Bergell, Biella). The oldest volcanic sources (Lutetian–Priabonian) we identify are in the Trento Basin and Glarus NAFB. During most Rupelian, Bergell and Biella volcaniclastics were delivered to the NAFB in the Glarus, Alpe de Taveyanne and Haute-Savoie. Bergell and minor Adamello magmatic material were supplied to the Villa Olmo Conglomerate in the SAFB. During late Rupelian–Chattian in the entire NAFB, the influx of Paleogene volcanic material faded out. At the same time in the SAFB, the Como Conglomerate shows mixed input from Biella and Bergell. High numbers of old zircons (> 90%) in the NAFB document the asymmetry of the early Alpine orogenic wedge exposing large basement areas to the north of the Periadriatic intrusions. The syn-sedimentary right-lateral movement along the Periadriatic fault system is identified as the main driver of magmatic activity, uplift, and exposure to erosion and transport to the basins. On this base, the dynamics of the early Alpine drainage systems are reconstructed with new accuracy.


Alpine foreland basins Detrital zircons U–Pb dates Geochemistry Paleogeography Alpine paleodrainage 



We thank V. Picotti, I. Dunkl, D. Letsch, D. Gallhofer, S. Large, H. Mändli, A. Beltrán-Triviño, and A. Mohammadi for continuous advice in the lab and for numerous discussions. The support of GL by a Chinese Scholarship Council (CSC) and ETH Zurich-internal funding is much appreciated. We thank Jirsi Slàma and an anonymous reviewer for constructive reviews and many suggestions to improve the manuscript.

Supplementary material

531_2019_1734_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1249 kb)
531_2019_1734_MOESM2_ESM.xlsx (7.1 mb)
Supplementary material 2 (XLSX 7252 kb)
531_2019_1734_MOESM3_ESM.xlsx (113 kb)
Supplementary material 3 (XLSX 113 kb)
531_2019_1734_MOESM4_ESM.docx (996 kb)
Supplementary material 4 (DOCX 995 kb)


  1. Allen PA, Crampton SL, Sinclair HD (1991) The inception and early evolution of the North Alpine Foreland Basin Switzerland. Basin Res 3:143–163CrossRefGoogle Scholar
  2. Bars H, Grigoriades J (1969) Über Basalttuffite s r oberen Mittel-Eozäns der Scaglia Grigia im Val di Non (Nonsberg) Provinz Trient Italien. Neues Jahrbuch Geologie Paläontologie Monatsheft 1969:643–645Google Scholar
  3. Barth S, Oberli F, Meier M (1989) U–Th–Pb systematics of morphologically characterized zircon and allanite: a high-resolution study of the Alpine Rensen pluton (northern Italy). EPSL 95:235–254CrossRefGoogle Scholar
  4. Belousova E, Griffin WL, O’Reilly SY, Fisher NL (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622CrossRefGoogle Scholar
  5. Beltrando M, Lister GS, Rosenbaum G, Richards S, Forster MA (2010) Recognizing episodic lithospheric thinning along a convergent plate margin: the example of the Early Oligocene Alps. Earth Sci Rev 103:81–98CrossRefGoogle Scholar
  6. Beltràn-Triviño A, Winkler W, von Quadt A (2013) Tracing Alpine sediment sources through laser-ablation U–Pb dating and Hf-isotopes of detrital zircons. Sedimentology 60:197–224CrossRefGoogle Scholar
  7. Berger A, Thomsen TB, Ovtcharova M, Kapferer N, Mercolli I (2012a) Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps: 1. The Miagliano Pluton. Swiss J Geosci 105:49–65CrossRefGoogle Scholar
  8. Berger A, Mercolli I, Kapferer N, Fügenschuh B (2012b) Single and double exhumation of fault blocks in the internal Sesia-Lanzo Zone and the Ivrea-Verbano Zone (Biella Italy). Int J Earth Sci 101:1877–1894CrossRefGoogle Scholar
  9. Bergomi MA, Zanchetta S, Tunesi A (2015) The tertiary dike magmatism in the Southern Alps: geochronological data and geodynamic significance. Int J Earth Sci 104:449–473CrossRefGoogle Scholar
  10. Bernoulli D, Bertotti G, Zingg A (1989) Northward thrusting of the Gonfolite Lombarda (South-Alpine molasse) onto the Mesozoic sequence of the Lombardian Alps: implications for the deformation history of the Southern Alps. Eclogae Geol Helv 82:841–856Google Scholar
  11. Bernoulli D, Giger M, Müller DW, Ziegler URF (1993) Sr-isotope-stratigraphy of the Gonfolite Lombarda Group (South-Alpine Molasse, northern Italy) and radiometric constraints for its age of deposition. Eclogae Geol Helv 86:751–767Google Scholar
  12. Bini A, Sciunnach D, Bersezio R, Scardia G, Tomasi F (2015) Note illustrative della Carta Geologica D’Italia alla scala 1:50.000, Foglio CARG 96 “Seregno”. pp 58–59Google Scholar
  13. Boyet M, Lapierre H, Tardy M, Bosch D, Maury R (2001) Nature des sources des composantes andésitiques des Grés du Chaupsaur et des Grés de Taveyannaz-Implications dans l’evolution des Alpes occidentales au Paléogène. Bulletin Société géologique de France 172:487–501CrossRefGoogle Scholar
  14. Broderick C, Wotzlaw JF, Frick DA, Gerdes A, Ulianov A, Günther D, Schaltegger U (2015) Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith N Italy). Contrib Mineral Petrol. Google Scholar
  15. Brügel A, Dunkl I, Frisch W, Kuhlemann J, Balogh K (2000) The record of Periadriatic volcanism in the Eastern Alpine Molasse zone and its paleogeographic implications. Terra Nova 12:42–47CrossRefGoogle Scholar
  16. Bütler E, Winkler W, Guillong M (2011) Laser ablation U/Pb age patterns of detrital zircons in the Late Maastrichtianan–Early Eocene Schlieren flysch (Central Switzerland)-new proves on the detrital sources. Swiss J Geosci 104:225–236CrossRefGoogle Scholar
  17. Callegari E, Brack P (2002) Geological map of the tertiary Adamello batholith (northern Italy): explanatory notes and legend. Società Coop Tipografica, NaplesGoogle Scholar
  18. Callegari E, Cigolini C, Medeot O, D’Antonio M (2004) Petrogenesis of calc-alkaline and shoshonitic post-collisional Oligocene volcanics of the cover series of the Sesia Zone Western Italian Alps. Geodin Acta 17:1–29CrossRefGoogle Scholar
  19. Carrapa B, Di Giulio A (2001) The sedimentary record of the exhumation of a granitic intrusion into a collisional setting: the lower Gonfolite Group Southern Alps Italy. Sediment Geol 139:217–228CrossRefGoogle Scholar
  20. Castellarin A, Dal Piaz GV, Picotti V, Selli L, Cantelli L, Martin S, Montresor L, Rigatti G, Prosser G, Bollettinari G, Pellegrini GB, Carton A, Nardin M (2005) Carta Geologica d’Italia 1:50,000,059, Tione di Trento: Explanatory notes. APAT, RomeGoogle Scholar
  21. Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574CrossRefGoogle Scholar
  22. Coletti G, Vezzoli G, Di Capua A, Basso D (2016) Reconstruction of a lost carbonate factory based on its biogenic detritus (Ternate-Travedona formation and Gonfolite Lombarda Group—norther Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) 122:1–22Google Scholar
  23. D’Adda P, Zanchi A, Bergomi M, Berra F, Malusà MG, Tunesi A, Zanchetta S (2011) Polyphase thrusting and dyke emplacement in the central Southern Alps (Northern Italy). Int J Earth Sci 100:1095–1113CrossRefGoogle Scholar
  24. Davidson C, Rosenberg C, Schmid SM (1996) Synmagmatic folding of the base of the Bergell pluton-Central Alps. Tectonophysics 265:213–238CrossRefGoogle Scholar
  25. De Celles PG, Giles KA (1996) Foreland basin systems. Basin Res 8:105–123CrossRefGoogle Scholar
  26. Deutsch A (1984) Young Alpine dykes south of the Tauern Window (Austria): a K–Ar and Sr isotope study. Contrib Mineral Petrol 85:45–57CrossRefGoogle Scholar
  27. Di Capua A, Groppelli G (2016) Application of actualistic models to unravel primary volcanic control on sedimentation (Taveyanne Sandstones, Oligocene Northalpine Foreland Basin). Sediment Geol 336:147–160CrossRefGoogle Scholar
  28. Di Capua A, Vezzoli G, Cavallo A, Groppelli G (2015) Clastic sedimentation in the Late Oligocene Southalpine Foredeep: from tectonically controlled melting to tectonically driven erosion. Geol J 51(3):338–353CrossRefGoogle Scholar
  29. Di Giulio A, Carrapa B, Fantoni R, Gorla L, Valdisturlo A (2001) Middle Eocene to Early Miocene sedimentary evolution of the western Lombardian segment of the South Alpine foredeep (Italy). Int J Earth Sci 90:534–548CrossRefGoogle Scholar
  30. Doglioni C, Bosellini A (1987) Eoalpine and mesoalpine tectonics in the Southern Alps. Geol Rundsch 76:735–754CrossRefGoogle Scholar
  31. Féraud G, Ruffet G, Stéphan JF, Lapierre H, Delgado E, Popoff M (1995) Nouvelles données géochronologiques sur le volcanisme paléogène des Alpes occidentales: existence d’un événement magmatique bref généralisé. Séance Spéciale de la Société géologique de France et de l” Association des Géologues du SE” Magmatismes dans le sud-est de la France” Nice, pp 25–26Google Scholar
  32. Fischer H, Villa IM (1990) Erste Ar/Ar und Ar/Ar-Hornblende-Mineralalter des Taveyannaz-Sandsteins. Schweiz Mineral Petrogr Mitt 70:73–75Google Scholar
  33. Fisher CM, Vervoort JD, Hanchar JM (2014) Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem Geol 363:125–133CrossRefGoogle Scholar
  34. Fontignie D (1981) Géochronologie des galets andésitiques du conglomérat des Grès dValal d’Illiez du Synclinal de Thônes (Haute-Savoie, France). Schweiz Mineral Petrogr Mitt 61:81–96Google Scholar
  35. Ford M, Lickorish WH (2004) Foreland basin evolution around the western Alpine Arc. Geol Soc Lond Spec Publ 221:39–63CrossRefGoogle Scholar
  36. Garzanti E, Malusà MG (2008) The Oligocene Alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500CrossRefGoogle Scholar
  37. Gautschi A, Montrasio A (1978) Die andesitisch-basaltischen Gänge des Bergeller Ostrandes und ihre Beziehung zur Regional- und Kontaktmetamorphose. Schweiz Mineral Petrogr Mitt 58:329–343Google Scholar
  38. Gelati R, Napolitano A, Valdisturlo A (1988) La “Gonfolite Lombarda”: stratigrafia e significato nell’evoluzione del margine sudalpino. Rivista Italiana di Paleontologia 94:285–332Google Scholar
  39. Gelati R, Napolitano A, Valdisturlo A (1992) A result of studies on the Meso-Cenozoic succession in the Monte Olimpino 2 tunnel. The tectono-sedimentary significance of the “Gonfolite Lombarda”. Rivista Italiana di Paleontologia 97:565–598Google Scholar
  40. Gianola O, Schmidt MW, von Quadt A, Peytcheva I, Luraschi P, Reusser E (2014) Continuity in geochemistry and time of the tertiary Bergell intrusion (Central Alps). Swiss J Geosci 107:197–222CrossRefGoogle Scholar
  41. Giger M, Hurford AJ (1989) Tertiary intrusives of the Central Alps: their Tertiary uplift erosion redeposition and burial in the south-alpine foreland. Eclogae Geol Helv 82:857–866Google Scholar
  42. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012. Elsevier, AmsterdamGoogle Scholar
  43. Guillong M, von Quadt A, Sakata S, Peytcheva I, Bachmann O (2014) LA-ICP-MS Pb–U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc. J Anal At Spectrom 29:1618–1629CrossRefGoogle Scholar
  44. Gunzenhauser BA (1985) Zur Sedimentologie und Paläogeographie der oligo-miocaenen Gonfolite Lombarda zwischen Lago Maggiore und der Brianza. Beitr. geol. Karte Schweiz 159Google Scholar
  45. Handy MR, Franz L, Heller F, Janotte B, Zurbriggen R (1999) Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics 18:1154–1177CrossRefGoogle Scholar
  46. Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158CrossRefGoogle Scholar
  47. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  48. Jaquet Y, Duretza T, Grujic D, Masson H, Schmalholza SH (2017) Formation of orogenic wedges and crustal shear zones by thermal softening associated topographic evolution and application to natural orogens. Tectonophysics 11:78. Google Scholar
  49. Ji WQ, Wu FY, Tiepolo M, Langone A, Abraga B (2013) Zircon U–Pb age and Hf isotope constraints on the petrogenesis of the Alpine Peri-Adriatic intrusions. Mineral Mag 77:1386Google Scholar
  50. Kapferer N, Mercolli I, Berger A, Ovtcharova M, Fügenschuh B (2012) Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps: 2 The Biella Volcanic Suite. Swiss J Geosci 105:67–84CrossRefGoogle Scholar
  51. Lateltin O (1988) Les dépôts turbiditiques oligocènes d’avant-pays entre Annecy (Haute-Savoie) et le Sanetsch (Suisse). Dissertation, University of FribourgGoogle Scholar
  52. Lateltin O, Müller D (1987) Evolution paléogéographique du bassin des grès de Taveyannaz dans les Aravis (Haute-Savoie) à la fin du Paléogène. Eclogae Geol Helv 80:127–140Google Scholar
  53. Leake BE, Woolley AR, Arps CE, Birch WD, Gilbert MC, Grice JD, Linthout K (1997) Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineral Mag 61:295–321CrossRefGoogle Scholar
  54. Lu G, Winkler W, Rahn M, von Quadt A, Willett SD (2018) Evaluating igneous sources of the Taveyannaz Formation in the Central Alps by detrital zircon U–Pb age dating and geochemistry. Swiss J Geosci. Google Scholar
  55. Ludwig KR (2012) Isoplot 375, 5th edn. Berkeley Geochronology Center Special Publication, BerkeleyGoogle Scholar
  56. Malusà MG, Anfinson OA, Dafov LN, Stoeckli DF (2016) Tracking Adria indentation beneath the Alps by detrital zircon U–Pb geochronology: implications for the Oligocene–Miocene dynamics of the Adriatic microplate. Geology 44:155–158CrossRefGoogle Scholar
  57. Martin S, Macera P (2014) Tertiary volcanism in the Italian Alps (Giudicarie fault zone NE Italy): insight for double alpine magmatic arc. Ital J Geosci 133:63–84CrossRefGoogle Scholar
  58. Mayer A, Cortiana G, Dal Piaz GV, Deloule E, De Pieri R, Jobstraibitzer P (2003) U–Pb single zircon ages of the Adamello batholith Southern Alps. Memoir di Scienze Geologiche (Padova) 55:151–167Google Scholar
  59. Müller W, Prosser G, Mancktelow NS, Villa IM, Kelley SP, Viola G, Oberli F (2001) Geochronological constraints on the evolution of the Periadriatic Fault System. Int J Earth Sci 90:623–653CrossRefGoogle Scholar
  60. Nievergelt P, Dietrich V (1977) Die andesitisch-basaltischen Gänge des Piz Lizun (Bergell). Schweiz Mineral Petrogr Mitt 57:267–280Google Scholar
  61. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  62. Petrus JA, Kamber BS (2012) Visualual age: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostand Geoanal Res 36:247–270CrossRefGoogle Scholar
  63. Pfiffner AO (1986) Evolution of the north Alpine foreland basin in the Central Alps. Spec Publ Int Assoc Sedimentol 8:219–228Google Scholar
  64. Pfiffner AO (2014) Geology of the Alps. Wiley, New YorkGoogle Scholar
  65. Pomella H, Klötzli U, Scholger R, Stipp M, Fügenschuh B (2011) The Northern Giudicarie and the Meran-Mauls fault (Alps Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites). Int J Earth Sci. Google Scholar
  66. Rahn M (1994) Incipient metamorphism of the Glarus Alps: petrology of the Taveyanne greywacke and fission track dating. Ph.D. Thesis University Basel, SwitzerlandGoogle Scholar
  67. Rögl F, Cita MB, Müller C, Hochuli P (1975) Biochronology of conglomerate bearing Molasse sediments near Como (Italy). Rivista Italiana di Paleontologia 81:57–88Google Scholar
  68. Rosenberg CL (2004) Shear zones and magma ascent: a model based on a review of the Tertiary magmatism in the Alps. Tectonics 23:1–21CrossRefGoogle Scholar
  69. Ruffini R, Polino R, Calegari E, Hunziker LC, Pfeifer HR (1997) Volcanic clast rich turbidites of the Taveyanne sandstone from the Thônes syncline (Savoie France): records for a Tertiary postcollisional volcanism. Schweiz Mineral Petrogr Mitt 77:161–174Google Scholar
  70. Samperton KM, Schoene B, Cottle JM, Keller CB, Crowley JL, Schmitz MD (2015) Magma emplacement, differentiation and cooling in the middle crust: integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps. Chem Geol 417:322–340CrossRefGoogle Scholar
  71. Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 15 million years of magma accretion crystallization and initial cooling in a composite pluton (southern Adamello batholith northern Italy). Earth Planet Sci Lett 286:208–218CrossRefGoogle Scholar
  72. Schaltegger U, Skopelitis A, Ulianov A, Gerdes A, Fisher CM, Hanchar J, Whitehouse M, Bindeman I, Müntener O (2017) Birth, Assembly and Decay of a Continental Arc Magmatic System. Goldschmidt abstracts 2017:3529Google Scholar
  73. Scheuring B, Ahrendt H, Hunziker JC, Zingg A (1974) A Tertiary Andesite Complex NW Biella on the boundary between central and southern Alps. Geol Rundsch 63:305–325CrossRefGoogle Scholar
  74. Schmid SM, Aebli HR, Heller F, Zingg A (1989) The role of the Periadriatic line in the tectonic evolution of the Alps. Geol Soc Lond Spec Publ 45:153–171CrossRefGoogle Scholar
  75. Schoene B, Schaltegger U, Brack P, Latkoczy Ch, Stracke A, Günther D (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA Adamello batholith Italy. Earth Planet Sci Lett 355–356:162–173CrossRefGoogle Scholar
  76. Sciunnach D (2014) Geochemistry of Detrital Chromian Spinel as a Marker for Cenozoic Multistage Tectonic Evolution of the Alps. Rend Online Soc Geol It 32:15–23Google Scholar
  77. Sciunnach D, Borsato A (1994) Plagioclase-arenites in the Molveno Lake area (Trento): record of an Eocene volcanic arc. Stud Trent Sci Nat 69:81–92Google Scholar
  78. Sharman GR, Hubbard SM, Covault JA, Hinsch R, Linzer H-G, Graham SA (2017) Sediment routing evolution in the North Alpine foreland basin Austria: interplay of transverse and longitudinal sediment dispersal. Basin Res 30:426–447CrossRefGoogle Scholar
  79. Siegenthaler C (1974) Die Nordhelvetische Flysch-Gruppe im Sernftal (Kt Glarus) Dissertation, University of ZürichGoogle Scholar
  80. Sinclair HD (1992) Turbidite sedimentation during Alpine thrusting: the NH Flyschs of eastern Switzerland. Sedimentology 39:837–856CrossRefGoogle Scholar
  81. Sinclair HD, Coakley BJ, Allen PA, Watts AB (1991) Simulation of Foreland Basin stratigraphy using diffusionsion-model of mountain belt uplift and erosion: an example from the Central Alps Switzerland. Tectonics 10:599–620CrossRefGoogle Scholar
  82. Skopelitis A (2014) Formation of a tonalitic batholith through sequential accretion of magma batches. Ph.D. Thesis Geneva UniversityGoogle Scholar
  83. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Schaltegger U (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  84. Steenken A, Siegesmund S, Heinrichs T, Fügenschuh B (2002) Cooling and exhumation of the Rieserferner Pluton (Eastern Alps Italy/Austria). Int J Earth Sci 91:799–817CrossRefGoogle Scholar
  85. Tiepolo M, Tribuzio R, Ji WQ, Wu FY, Lustrino M (2014) Alpine Tethys closure as revealed by amphibole-rich mafic and ultramafic rocks from the Adamello and the Bergell intrusions (Central Alps). J Geol Soc 171:793–799CrossRefGoogle Scholar
  86. Tremolada F, Guasti E, Scardia G, Carcano C, Rogledi S, Sciunnach D (2010) Reassessing the biostratigraphy and the paleobathymetry of the Gonfolite Lombarda Group in the Como area (northern Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy) 116(1):35–49Google Scholar
  87. von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131CrossRefGoogle Scholar
  88. von Blanckenburg F, Früh-Green G, Diethelm K, Stille P (1992) Nd- Sr- O-isotopic and chemical evidence for a two-stage contamination history of mantle magma in the Central-Alpine Bergell intrusion. Contrib Mineral Petrol 110:33–45CrossRefGoogle Scholar
  89. von Quadt A, Gallhofer D, Guillong M, Peytcheva I, Waelle M, Sakata S (2014) U/Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: impact for their geological interpretation. J Anal At Spectrom 29:1618–1629CrossRefGoogle Scholar
  90. Vuagnat M (1944) Essai de subdivision a l’intérieur du groupe des grés de Taveyannaz—grés d’Altdorf. Eclogae Geol Helv 37:427–430Google Scholar
  91. Waibel AF (1993) Nature and plate-tectonic significance of orogenic magmatism in the European Alps: a review. Schweiz Mineral Petrogr Mitt 73:391–405Google Scholar
  92. Willett SD, Schlunegger F (2009) The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Res 22:623–639CrossRefGoogle Scholar
  93. Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195CrossRefGoogle Scholar
  94. Zurfluh R (2012) Eozäne vulkanoklastische Sandsteine im Nonsberg/Italien. Unpubl. BSc Thesis ETH ZurichGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengdu University of TechnologyChengduChina
  2. 2.Geological InstituteETH ZurichZurichSwitzerland
  3. 3.CNR-IDPAMilanItaly
  4. 4.Swiss Federal Nuclear Safety InspectorateBruggSwitzerland
  5. 5.Institute for Geochemistry and PetrologyETH ZurichZurichSwitzerland

Personalised recommendations