Advertisement

Detrital zircon U–Pb geochronology of Pennsylvanian–Permian sandstones from the Turnaicum and Meliaticum (Western Carpathians, Slovakia): provenance and tectonic implications

  • Anna VozárováEmail author
  • Nickolay Rodionov
  • Katarína Šarinová
  • Elena Lepekhina
  • Jozef Vozár
  • Ilya Paderin
Original Paper
  • 62 Downloads

Abstract

The blueschist-bearing Bôrka Nappe regarded as a part of the Meliaticum Unit s. l. and the Turnaicum Unit in its hanging-wall were thrusted together to the north on the Inner Western Carpathians basement during the orogenic events of the Late Jurassic–Early Cretaceous. A new U–Pb sensitive high-resolution ion microprobe (SHRIMP) magmatic, as well as detrital-zircon ages were used to constrain provenance and paleogeography. The detrital-zircon age spectrum of the studied metasediments contains mainly ages of the Ediacaran–Cryogenian (550–720 Ma) and Tonian–Stenian (0.9–1.1 Ga), which correspond to the Pan-African Belt and Saharan Metacraton. Subordinate Archean ages were likely derived from the Saharan Metacraton of North Gondwana (1.7–2.2 and 2.5–2.7 Ga). The 273 ± 2 Ma zircon age of a metarhyolite, along with the youngest detrital zircon of 265 ± 4 Ma from the associated metasediments, specify the maximum depositional age of the Bučina Fm. from the Bôrka Nappe to the Guadalupian. The rhyolite olistoliths from the Middle/Late Jurassic Meliaticum olistostrome yielded the latest Cambrian/earliest Ordovician (488 ± 6 Ma) and Middle Ordovician (~ 465 Ma) zircon ages. This is consistent with the U–Pb zircon ages from the foot-walling Southern Gemericum basement metavolcanites, which are, therefore, regarded as a potential source. The obtained zircon ages confirm the provenance from the Southern Gemericum basement and its Permian envelope for the Meliaticum-Bôrka Nappe and Turnaicum sedimentary embayment.

Keywords

SHRIMP zircon ages Provenance variations Tectonic implication Meliaticum embayment 

Notes

Acknowledgements

The financial support of the Slovak Research and Development Agency (projects ID: APVV-0546-11 and APVV-0146-16) and of the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (project VEGA 1/0141/15) is gratefully appreciated. We would like to thank A. Gärtner, A. Abbo and A. Gerdes for their helpful and critical comments on earlier versions of the manuscript. We also thank M. J. Sabo for reviewing the English content.

Supplementary material

531_2019_1733_MOESM1_ESM.xlsx (39 kb)
Supplementary material 1 (XLSX 38 kb)

References

  1. Ali KA, Wilde SA, Stern RJ, Moghazi A-KM, Ameen SMM (2013) Hf isotopic composition of single zircons from Neoproterozoic arc volcanics and post-collision granites, Eastern Desert of Egypt: implications for crustal growth and recycling in the Arabian-Nubian Shield. Precambrian Res 239:42–55CrossRefGoogle Scholar
  2. Árkai P, Kovács S (1986) Diagenesis and regional metamorphism of the Aggtelek-Rudabánya (NE Hungary). Acta Geol Hung 29:349–373Google Scholar
  3. Avigad D, Gerdes A, Morag N, Bechstadt T (2012) Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of north Gondwana. Gondwana Res 21:690–703CrossRefGoogle Scholar
  4. Bajaník Š, Hanzel V, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1983) Explanation to geological map of the Slovenské rudohorie Mts.—eastern part. D Štúr Inst Geol Publ House, Bratislava, pp 223 (Slovak)Google Scholar
  5. Balintoni I, Balica C, Ducea NM, Hann PH (2014) Peri-Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411CrossRefGoogle Scholar
  6. Be’eri-Shlevin Y, Avigad D, Gerdes A, Zlatkin O (2014) Detrital zircon U–PB–Hf systematics of Israeli coastal sands: new perspectives on the provenance on Nile sediments. J Geol Soc 171(1):107–116CrossRefGoogle Scholar
  7. Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996) Explanation to geological map of Slovakia 1:500,000. Dionýz Štúr Publishers, Bratislava, p 76Google Scholar
  8. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170.  https://doi.org/10.1016/S0009-2541(03)00165-7 CrossRefGoogle Scholar
  9. Broska I, Petrík I, Beʹeri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36CrossRefGoogle Scholar
  10. Burda J, Gawęda A, Klötzli U (2011) Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians). Miner Petrol 103(1):19–36CrossRefGoogle Scholar
  11. Cassinis G, Perotti CR, Ronchi A (2012) Permian continental basins in the Southern Alps (Italy) and Peri-Mediterranean correlations. Int J Earth Sci (Geol Rundsch) 101:129–157.  https://doi.org/10.1007/s0053-011-0642-6 CrossRefGoogle Scholar
  12. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society. Rev Min Geochem 53:469–500Google Scholar
  13. Csontos L, Vörös A (2004) Mesozoic plate-tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56CrossRefGoogle Scholar
  14. Dallmayer RD, Németh Z, Putiš M (2005) Regional tectonothermal events in Gemericum and adjacent units (Western Carpathians, Slovakia): contribution by 40Ar/39Ar dating. Slovak Geol Mag 11(2–3):155–163Google Scholar
  15. Dallmeyer RD, Neubauer F, Fritz H (2008) The Meliata suture in the Carpathians: regional significance and implications for the evolution of high-pressure wedges within collisional orogens. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the Alpine-Dinaride-Carpathian system, 298th edn. Geol Soc London Spec Publ, London, pp 101–115Google Scholar
  16. Deroin JP, Bonin B (2003) Late Variscan tectonomagmatic activity in Western Europe and surrounding areas: the mid-Permian Episode. Boll Soc Geol It Spec 2:169–184Google Scholar
  17. Dörr W, Zulauf G, Gerdes A, Lahaye Y, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U-Pb data of magmatic and detrital zircons of the external Hellenides (Crete and Peloponnesus). Precambr Res 258:83–108.  https://doi.org/10.1016/j.precamres.2014.12.015 CrossRefGoogle Scholar
  18. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19(1):213–231CrossRefGoogle Scholar
  19. Dumitrica P, Mello J (1982) On the age of the Meliata group and the Silica Nappe radiolarites (localities Držkovce and Bohúňovo, Slovak Karst, ČSSR). Geol Práce Správy 77:17–28Google Scholar
  20. Ebner F, Vozárová A, Straka P, Vozár J (1990) Carboniferous conodonts from the Brusník Anticline (South Slovakia). In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Fed Geol Surv, Vienna, pp 249–252Google Scholar
  21. Ebner F, Vozárová A, Kovács S, Kräutner H-G, Krstić B, Szederkényi T, Jamićić D, Balen D, Belak M, Trajanova M (2008) Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geol Carpath 59(2):159–195Google Scholar
  22. Eyal M, Beʼeri-Shlevin Y, Eyal Y, Whitehouse MJ, Litvinovsky B (2014) Three successive Proterozoic island arcs in the northern Arabian-Nubian Shield: evidence from SIMS U–Pb dating of zircon. Gondwana Res 25:338–357CrossRefGoogle Scholar
  23. Faryad SW (1995) Phase petrology and P–T conditions of mafic blueschists from the Meliata unit, West Carpathians, Slovakia. J Metamorph Geol 13:701–714CrossRefGoogle Scholar
  24. Faryad SW, Frank W (2011) Textural and age relations of polymetamorphic rocks in the HP Meliata unit (Western Carpathians). J Asian Earth Sci 42(1–2):111–122.  https://doi.org/10.1016/j.jseas.2011.03.016 CrossRefGoogle Scholar
  25. Faryad SW, Henjes-Kunst F (1997) K-Ar and 40Ar/39Ar constraints for the tectonothermal evolutions of the high-pressure Meliata Unit, Western Carpathians (Slovakia). Tectonophysics 280(4):141–156CrossRefGoogle Scholar
  26. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci (Geol Runsch) 93:802–823.  https://doi.org/10.1007/s00531-004-0420-9 CrossRefGoogle Scholar
  27. Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) The geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geological Society Publishing House, London, pp 1141–1232Google Scholar
  28. Gaál Ľ (2008) Geodynamics and development of caves in the Slovak Karst. Speleologia Slovaca, Liptovský Mikuláš, 1–166 (Slovak with English summary)Google Scholar
  29. Gärtner A, Linnemann U, Sagawe A, Hoffmann M, Ullrich B, Kleber A (2013) Morphology of zircon crystal grains in sediments—characteristics, classifications, definition. Geol Saxonica 59:65–73Google Scholar
  30. Gawlick H-J, Missoni S, Schlagintweit F, Suzuki H (2012) Jurassic active continental margin deep-water basin and carbonate platform formation in the north-western Tethyan realm (Austria, Germany). J Alp Geol 54:189–292Google Scholar
  31. Grill J, Kovács S, Less GY, Réti ZS, Róth L, Szentpétery I (1984) Geology and evolution of the Aggtelek-Rudabánya Mts. Földtani Kutatás 27:49–56 (Hungarian) Google Scholar
  32. Guynn J, Gehrels GE (2010) Comparison of detrital zircon age distribution using the K–S test. pp 1–16 http://sites.google.com/a/laserchron.org/laserchron/home. Accessed 8 Mar 2017
  33. Havrila M, Ožvoldová L (1996) Meliaticum in the Stratenská hornatina Hills. Slovak Geol Mag 3–4:335–339Google Scholar
  34. Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304CrossRefGoogle Scholar
  35. Hók J, Kováč P, Rakús M (1995) Structural investigations of the Inner Carpathians—results and interpretation. Miner Slov 27:231–235 (Slovak with English summary) Google Scholar
  36. Horváth B, Hips K (2015) Microfacies associations of Middle and Upper Triassic slope and basin carbonates deposited along the Neotethyan margin, NE Hungary. Austrian J Earth Sci 108(1):34–49CrossRefGoogle Scholar
  37. Hovorka D, Spišiak J (1988) Mesozoic volcanism of the Western Carpathians. VEDA, Bratislava, pp 1–258 (Slovak with English summary)Google Scholar
  38. Hovorka D, Ivan P, Jilemnická I, Spišiak J (1988) Petrology and geochemistry of metabasalts from Rakovec (Paleozoic of Gemeric Unit, Inner Western Carpathians). Geol Zborn Geol Carpath 39:395–425Google Scholar
  39. Hovorka D, Ivan P, Mock R, Rozložník L, Spišiak J (1990) Sediments of Gosau type near the Dobšiná ice cave: ideas for their non-traditional interpretation. Miner Slovaca 22:519–525 (Slovak with English summary) Google Scholar
  40. Hubmann B (ed) (2014) The lithostratigraphic units of the Austrian Stratigraphic Chart 2004 (sedimentary succession). Vol. 1. The Paleozoic Era. Abn Geol B-A 66:7–133Google Scholar
  41. Iizuka T, Campbell IH, Allen CM, Gill JB, Maruyama S, Makoka F (2013) Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochim Cosmochim Acta 107:96–120CrossRefGoogle Scholar
  42. International Commission on Stratigraphy (2017) International Chronostratigraphic Chart v 2017/02 http://www.stratigraphy.org/ICSchart/ChronostratChart.2017-02.pdf. Accessed 25 Jan 2017
  43. Isozaki Y (2009) Illawara Reversal: the fingerprint of superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana Res 15:421–432CrossRefGoogle Scholar
  44. Ivan P (2002) Relics of the Meliata Ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies. Geol Carpath 53:245–256Google Scholar
  45. Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geol Carpath 60(5):345–350CrossRefGoogle Scholar
  46. Kolodner K, Avigad D, McWilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstones: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143:367–391CrossRefGoogle Scholar
  47. Kovács S (1992) Tethys “western ends” during the Late Paleozoic and Triassic and their possible genetic relationships. Acta Geol Hung 35(4):329–369Google Scholar
  48. Kovács S (1997) Middle Triassic rifting and facies differentiation in northeast Hungary. In: Sinha AK, Sassi FP, Papanikolau D (eds) Geodynamic domains in the Alpine-Himalayan Tethys. Oxford & IBH Publ, New Delhi, pp 375–397Google Scholar
  49. Kovács S (2010) Type section of the Triassic Bódvalenke Limestone Formation (Rudabanya Hills, NE Hungary)—the northwesternmost occurrence of a Neotethyan deep water facies. Centr Europ Geology 53(2–3):121–133CrossRefGoogle Scholar
  50. Kovács S, Less G, Piros O, Réti Z, Róth L (1989) Triassic formations of the Aggtelek-Rudabánya Mountains (Northeastern Hungary). Acta Geol Hung 32:31–63Google Scholar
  51. Kozur H (1991) The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeogr Palaeoclim Palaeoecol 87:109–135CrossRefGoogle Scholar
  52. Kozur H, Mock R (1973) Zum Alter und zur tektonischen Stellung der Meliata Serie des Slovakische Karstes. Geol Zborn SAV 24(2):364–374Google Scholar
  53. Kozur H, Mock R (1985) Erster Nachweis von Jura in der Meliata-Einheit der südlichen Westkarpaten. Geol Paläont Mitt Innsbruck 13(10):222–238Google Scholar
  54. Kozur H, Mock R (1995) First evidence of Jurassic in the Folkmar Suture Zone of the Meliaticum in Slovakia and its tectonic implications. Miner Slovaca 27:301–307Google Scholar
  55. Kozur H, Mock R (1997) New paleogeographic and tectonic interpretation in the Slovakian Carpathians and their implications for correlations with the Eastern Alps. Part II. Inner Western Carpathians. Miner Slovaca 29:164–209Google Scholar
  56. Lačný A, Plašienka D, Vojtko R (2016) Structural evolution of the Turňa Unit constrained by fold and cleavage analyses and its consequences for the regional tectonic models of the Western Carpathians. Geol Carpath 67(2):177–193.  https://doi.org/10.1515/geoca-2016-0012 CrossRefGoogle Scholar
  57. Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltic. Mem Geol Soc Lond 30:69–74CrossRefGoogle Scholar
  58. Leško B, Varga I (1980) Alpine elements in the West Carpathian structure and their significance. Miner Slov 12:97–130Google Scholar
  59. Less G (2000) Polyphase evolution of the structure of the Aggtelek-Rudabánya Mountains (NE Hungary), the southernmost element of the Inner Western Carpathians—a review. Slovak Geol Mag 6:260–268Google Scholar
  60. Lexa O, Schulmann K, Ježek J (2003) Cretaceous collision and indentation in the West Carpathians: view based on structural analysis and numerical modeling. Tectonics 22(6):1066.  https://doi.org/10.1029/2002TC001472 CrossRefGoogle Scholar
  61. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints of the LA-ICP-MS zircon dating and analyses of plate-tectonic setting, Saxo-Thuringian zone, northeastern Bohemian Massif, Germany. Geol Soc Am Spec Pap 423:61–96Google Scholar
  62. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278CrossRefGoogle Scholar
  63. Ludwig KR (2005a) SQUID 1.12 A Userʼs Manual. A geochronological toolkit for microsoft excel. Berkeley Geochronology Centre Special Publication, pp 1–22. http://www.bgc.org/klprogrammenu.html
  64. Ludwig KR (2005b) Userʼs Manual for ISOPLOT/Ex 3.22. A geochronological toolkit for microsoft excel. Berkeley Geochronology Centre Special Publication, pp 1–71. http://www.bgc.org/klprogrammenu.html
  65. Ludwig KR (2012) Userʼs Manual for Isoplot 3.75. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication No. 5, pp 1–71. http://www.bgc.org/isoplot.html
  66. Madarás J, Hók J, Ivanička J, Kováč P, Lexa O, Mello J, Vozár J (1995) Special geological map of Nižná Slaná Depression and of the contact zone of Gemeric and Veporic, 1:25 000. Manuscript (Digital version), Archives Slovak Geol Surv, BratislavaGoogle Scholar
  67. Maheľ M (1986) Geological structure of the Czechoslovak Carpathians, Part 1: Paleoalpine units. Veda Publ House, Bratislava, p 503 (Slovak) Google Scholar
  68. Maluski H, Rajlich P, Matte P (1993) 40Ar-39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics 223:313–337CrossRefGoogle Scholar
  69. Mandl G (2000) The Alpine sector of the Tethyan shelf—examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Gesell 92:61–77Google Scholar
  70. Mazzoli C, Vozárová A (1998) Subduction related processes in the Bôrka nappe (Inner Western Carpathians): a geochemical and petrological approach. In. Rakús M (ed) Geodynamic development of the Western Carpathians, Geol Surv Slovak Rep, Dionýz Štúr Publs, pp 89–106Google Scholar
  71. Mazzoli C, Sassi R, Vozárová A (1992) The pressure character of the Alpine metamorphism in the Central and Inner Western Carpathians (Czecho-Slovakia). In: Vozár J (ed) Special Volume of IGCP Project No 276, Dionýz Štúr Inst Geol, Bratislava, pp 109–117Google Scholar
  72. McGee B, Collins AS, Trindade RI, Payne J (2015) Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brasil. Geol Soc Am Bull 127(1–2):76–86CrossRefGoogle Scholar
  73. Meinhold D, Morton AC, Fanning CM, Frei D, Howard JP, Philips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312:164–175CrossRefGoogle Scholar
  74. Meinhold G, Morton AC, Avigad D (2012) New insight into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665CrossRefGoogle Scholar
  75. Meinhold G, Morton AC, Fanning CM, Howard JP, Philips RJ, Strogen D, Whitham AG (2014) Insight into crust formation and recycling in North Africa from combined U–Pb, Lu-Hf and O isotope data of detrital zircons from Devonian sandstone of southern Libya. Geol Soc Lond Spec Publ 386:281–292CrossRefGoogle Scholar
  76. Mello J, Elečko M, Pristaš J, Reichwalder P, Snopko L, Vass D, Vozárová A, Gaál Ľ, Hanzel V, Hók J, Kováč P, Slavkay M, Steiner A (1997) Explanations to the geological map of the Slovenský kras Mts 1:50 000. Dionýz Štúr Publ House Bratislava, pp 1–225 (Slovak with English summary)Google Scholar
  77. Mello J, Vozárová A, Vozár J, Gargulák M, Hanzel V, Káčer Š, Karoli S, Molák B, Šucha V, Širáňová V (1994) Interpretation of the structural borehole DRŽ-1 (Držkovce). Manuscript—archive Geol Surv Slovak Rep, Bratislava, pp 1–104 (Slovak)Google Scholar
  78. Mello J, Reichwalder P, Vozárová A (1998) Bôrka nappe: high-pressure relic from the subduction-accretion prism of the Meliata Ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–273Google Scholar
  79. Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrated time analysis. In: Scholle PA, Peryt TM, Ulmer-Sholle DS (eds) The Permian of Northern Pangea, Vol 1: Paleogeography, Paleoclimates, Stratigraphy. Springer, Berlin, pp 77–97CrossRefGoogle Scholar
  80. Menning M (2001) A Permian Time Scale 2000 and correlation of marine and continental sequences using the Illawarra Reversal (265 Ma). In: Cassinis G (ed) Permian continental deposits of Europe and other areas. Regional reports and correlations. Natura Bresciana, Ann Mus Civ Sci Nat, Brescia, Monografia No 25, pp 355–362Google Scholar
  81. Mock R, Sýkora M, Aubrecht R, Ožvoldová L, Kronome B, Reichwalder P, Jablonský J (1998) Petrology and stratigraphy of the Meliaticum near the Meliata and Jaklovce Villages, Slovakia. Slovak Geol Mag 4:223–260Google Scholar
  82. Morag N, Avigad D, Gerdes A, Harlavan Y (2012) 1000–850 Ma crustal evolution in the northern Arabian-Nubian Shield revealed by U–Pb–Hf of detrital zircons from late Neoproterozoic sediments (Elat area, Israel). Precambr Res 208:197–212CrossRefGoogle Scholar
  83. Murphy JB, Nance RD (1989) Model for evolution of the Avalonian-Cadomian belt. Geology 17:735–738CrossRefGoogle Scholar
  84. Murphy JB, Pisarevsky S, Nance RD (2013) Potential geodynamic relationship between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana. Mineral Petrol 107:635–650CrossRefGoogle Scholar
  85. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14:17–47Google Scholar
  86. Nance RD, Murphy JB (1994) Contrasting basement signatures and palinspastic restoration of peripheral orogens: an example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22:617–620CrossRefGoogle Scholar
  87. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos R, Pisarevsky SA (2008) Neoproterozoic-early Paleozoic tectonostratigraphy and paleogeography of the peri-Gondwanan terranes: amazonian versus West African connections. Geol Soc Lond Spec Pub 297:345–383CrossRefGoogle Scholar
  88. Neubauer F, Vozárová A (1990) The Noetsch-Veitsch-Northgemeric Zone of Alps and Carpathians: Correlation, paleogeography and significance for Variscan orogeny. In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Federal Geol Surv, Vienna, pp 167–171Google Scholar
  89. Neubauer F, Frisch W, Hansen BT (2002) Early Paleozoic tectonothermal events in basement complexes of the eastern Greywacke Zone (Eastern Alps): evidence from U–Pb zircon data. Int J Earth Sci (Geol Rundsch) 91:775–786CrossRefGoogle Scholar
  90. Ondrejičková A (1992) Jurassic radiolarians from the borehole BRU-1 (Brusník). Geol Práce Správy 96:43–45Google Scholar
  91. Ondrejka M, Xian-Hua L, Vojtko R, Putiš M, Uher P, Sobocký T (2018) Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in situ zircon U–Pb SIMS ages and tectonic setting. Geol Carpath 69(2):187–198.  https://doi.org/10.1515/geoca-2018-0011 CrossRefGoogle Scholar
  92. Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Survey Slovak Republic, Bratislava, pp 107–130Google Scholar
  93. Plašienka D (2018) Continuity and episodicity in the early Alpine tectonic evolution of the Western Carpathians: how large-scale processes are expressed by the orogenic architecture and rock record data. Tectonics 37:2029–2079.  https://doi.org/10.1029/2017TC004779 CrossRefGoogle Scholar
  94. Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slovaca, Monograph, Bratislava, pp 1–24Google Scholar
  95. Poller U, Janák M, Kohút M, Todt W (2000) Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int J Earth Sci (Geol Rundsch) 89(2):336–349.  https://doi.org/10.1007/s005310000082 CrossRefGoogle Scholar
  96. Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59(1):3–18Google Scholar
  97. Putiš M, Frank W, Plašienka D, Siman P, Sulák M, Biroň A (2009) Progradation of the Alpidic Central Western Carpathian orogenic wedge related to two subductions: constrained by 40Ar/39Ar ages of white micas. Geodin Acta 22(1–3):31–56CrossRefGoogle Scholar
  98. Putiš M, Radvanec M, Sergeev S, Koller F, Michálek M, Snárska B, Koppa M, Šarinová K, Németh Z (2011) Metamorphosed succession of cherty shales with basalts and diastrophic breccia in olistolith of the Meliatic Jurassic accretion wedge near Jaklovce (Slovakia) dated on zircon (U–Pb SIMS). Miner Slov 43:1–18 (Slovak with English summary) Google Scholar
  99. Putiš M, Danišík M, Ružička P, Schmiedt I (2014) Constraining exhumation pathway in accretionary wedge by (U–Th)/He thermochronology–Case study on Meliatic nappes in the Western Carpathians. J Geodyn 81:80–90CrossRefGoogle Scholar
  100. Rakús M (1996) Jurassic of the innermost Western Carpathians zones – its importance and influence on the geodynamic evolution of the area. Slov Geol Mag 3–4:311–317Google Scholar
  101. Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. D Štúr Publ, Monograph, Bratislava, pp 15–26Google Scholar
  102. Robinson FA, Foden JD, Collins AS, Payne JL (2014) Arabian Schield magmatic cycles and their relationship with Gondwana assembly: insights from zircon U–Pb and Hf isotopes. Earth Planet Sci Lett 408:207–225CrossRefGoogle Scholar
  103. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 100:139–183.  https://doi.org/10.1007/s00015-008-1247-3 CrossRefGoogle Scholar
  104. Schönlaub HP, Heinisch H (1993) The classic fossiliferous Paleozoic units of the Eastern and Southern Alps. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic Geology in the Alps. Springer, Berlin, Heidelberg, New York, pp 395–422CrossRefGoogle Scholar
  105. Şengör AMC (1984) The Cimeric orogenic system and the tectonic of Eurasia. Geol Soc Am Spec Paper 195:82Google Scholar
  106. Spišiak J, Hovorka D, Ivan P (1985) Klátov Group the representative of the Paleozoic amphibolite facies metamorphites of the Inner Western Carpathians. Geol Práce Správy 82:205–220 (Slovak with English summary) Google Scholar
  107. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  108. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  109. Vai GB (2003) Development of the palaeography of Pangaea from Late Carboniferous to Early Permian. Palaeogr Palaoclimat Palaeoecol 196:125–155CrossRefGoogle Scholar
  110. Vermeesch P (2012) On the visualization detrital age distributions. Chem Geol 312–313:190–194.  https://doi.org/10.1016/j.chemgeo.2012.04.021 CrossRefGoogle Scholar
  111. Vozár J, Vozárová A, Bodiš D, Ebner F, Gargulák M, Hanzel V, Ondrejičková A, Planderová E, Straka P, Vanek J (1988) Interpretation of the structural borehole BRU-1. Brusník, Manuscript-Archive Geol Surv Slovak Rep, Bratislava (Slovak)Google Scholar
  112. Vozár J, Tomek Č, Vozárová A (1995) Deep seismic profile G: geological interpretation (Western Carpathians, Slovakia). PANCARDI, Conference Absract, Stará lesná, pp 8–12Google Scholar
  113. Vozárová A (1973) Pebble analysis of the late Paleozoic conglomerates in Spišsko-Gemerské rudohorie Mts. Geol Zborn Západné Karpaty 18:7–98 (Slovak) Google Scholar
  114. Vozárová A (1996) Tectono-sedimentary Evolution of Late Paleozoic Basins based on Interpretation of Lithostratigraphic Data (Western Carpathians; Slovakia). Slovak Geol Mag 2–4:251–271Google Scholar
  115. Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. Monogr, D Štúr Inst Geol, Bratislava, pp 1–314Google Scholar
  116. Vozárová A, Vozár J (1992) Tornaicum and Meliaticum in borehole Brusník BRU-1, Southern Slovakia. Acta Geol Hung 35(2):97–116Google Scholar
  117. Vozárová A, Frank W, Kráľ J, Vozár J (2005) 40Ar/39Ar dating of detrital mica from the Upper Paleozoic sandstones in the Western Carpathians (Slovakia). Geol Carpath 56(6):463–472Google Scholar
  118. Vozárová A, Konečný P, Vozár J, Šmelko M (2008) Upper Jurassic-Lower Cretaceous tectonothermal events in the Southern Gemeric Permian rocks deduced from electron microprobe dating of monazite. Geol Carpath 59(2):89–102Google Scholar
  119. Vozárová A, Šmelko M, Paderin I (2009) Permian single crystal U-Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia). Geol Carpath 60:439–448.  https://doi.org/10.2478/v10096-009-0032-1 CrossRefGoogle Scholar
  120. Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U–Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99(Suppl 1):S17–S37.  https://doi.org/10.1007/s00531-009-0454-0 CrossRefGoogle Scholar
  121. Vozárová A, Šmelko M, Paderin I, Larionov A (2012) Permian volcanics in the Northern Gemericum and Bôrka Nappe system: U–Pb zircon dating and implication to geodynamic evolution (Western Carpathians, Slovakia). Geol Carpath 63:191–200CrossRefGoogle Scholar
  122. Vozárová A, Laurinc D, Šarinová K, Larionov A, Presnyakov S, Rodionov N, Paderin I (2013) Pb ages of detrital zircons in relation to geodynamic evolution: paleozoic of the Northern Gemericum (Western Carpathians, Slovakia). J Sediment Res 83:915–927.  https://doi.org/10.2110/jsr.2013.66 CrossRefGoogle Scholar
  123. Vozárová A, Konečný P, Šarinová K, Vozár J (2014) Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch) 103(4):1005–1022.  https://doi.org/10.1007/s0053-014-1009-6 CrossRefGoogle Scholar
  124. Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2017) New zircon ages on the Cambrian-Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106:2147–2170.  https://doi.org/10.1007/s00531-016-1420-2 CrossRefGoogle Scholar
  125. Vozárová A, Larionov A, Šarinová K, Vďačný M, Lepekhina E, Vozár J, Lvov P (2018a) Detrital zircons from the Hronicum Carboniferous-Permian sandstones (Western Carpathians, Slovakia): depositional age and provenance. Int J Earth Sci (Geol Rundsch) 107:1539–1555.  https://doi.org/10.1007/s00531-017-1556-8 CrossRefGoogle Scholar
  126. Vozárová A, Larionov A, Šarinová K, Rodionov N, Lepekhina E, Vozár J, Paderin I (2018b) Clastic wedge provenance in the Zemplinicum Carboniferous-Permian rocks using the U-Pb zircon age dating (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch).  https://doi.org/10.1007/s00531-018-1654-3 Google Scholar
  127. Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon–melt distribution coefficient. Acta Geol Sinica (English Edition) 85(1):164–174.  https://doi.org/10.1111/j.1733-6724.2011.00387.x CrossRefGoogle Scholar
  128. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandard Newslett 19:1–23CrossRefGoogle Scholar
  129. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKissen MA, Shanks III WC, Ridley WS (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol, vol 7, pp 1–35Google Scholar
  130. Ziegler PA, Stampfli GM (2001) Late Palaeozoic-Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. In: Cassinis G (ed) Permian continental deposits of Europe and other areas. Regional reports and correlations. Natura Bresciana, Ann Mus Civ Sci Nat, Brescia, Monografia N, vol 25, pp 17–34Google Scholar
  131. Zlatkin O, Avigad D, Gerdes A (2017) The Pelagonian terrane in Greece in the peri-Gondwana mosaic of the Eastern Mediterranean: implications for the geological evolution of Avalonia. Precambr Res 290:163–183CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Department of Mineralogy and Petrology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Centre of Isotopic Research, A. P. Karpinsky Russian Geological Research Institute (FGBU « VSEGEI »)St.-PetersburgRussia
  3. 3.Earth Science Institute of Slovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations