Advertisement

Petrological and geochemical variations of a turbidite-like metasedimentary sequence over the metatexite to diatexite transition within the Pampean Orogen, Argentina

  • Juan E. OtamendiEmail author
  • Matías G. Barzola
  • Alina M. Tibaldi
  • Eber A. Cristofolini
  • Antonio M. Álvarez-Valero
  • Alejandro H. Demichelis
Original Paper
  • 17 Downloads

Abstract

Large masses of turbidite systems have been metamorphosed in orogenic systems during Earth’s history. Under granulite-facies conditions, the transformation of turbidite sedimentary successions into metasedimentary sequences drives intracrustal differentiation by anatexis and melt–residuum separation. We report on a migmatite terrane developing from turbidite successions that were buried into the deep crust during the Neoproterozoic to Early Cambrian Pampean orogeny, in central Argentina. At the exposed middle crustal paleodepths, migmatites occur on the regional scale but lithological zones are characterized by (1) bedded migmatites, (2) metatexite, and (3) diatexite. Bedded migmatites are the low-temperature part of the migmatite terrane where the alternating metapelite and metagreywacke layers are traceable among migmatites of different protoliths. The temperature (> 790 °C) was sufficient high for melting the metapelite, but not for melting the metagreywacke. The majority of the migmatite terrane consists of stromatic metatexites in which the limit among different progenitors is either faint or erased by migmatization. Metatexite zone acts as melt transfer in the migmatite terrane. In the stromatic migmatites, the major oxide composition of leucosomes and tabular bodies of leucogranite resembles those of the glasses of experimental petrology. However, leucosomes and leucogranites are crystallized melts that have low Zr, Th and LREE contents and positive Eu anomalies resulting from accessory mineral retention in melting residues. The transformation of metatexite into diatexite is gradational over tens of metres, and related to an accumulated melt fraction that dismembers the stromatic fabric. The most abundant diatexite is mesocratic, and has little or lacks K-feldspar. A subordinate proportion of diatexites is leucocratic, contains K-feldspar phenocrysts, and shows igneous-like textures. Leucogranites and leucocratic diatexites are the potential carriers of an anatectic melt-rich component from granulite-facies migmatite sequences toward shallow crustal levels. Turbidite successions are fertile protoliths that undergo widespread melting under low granulite-facies temperature (< 850 °C), and the development of large diatexite massifs makes them suitable sources of granitic magmatism.

Keywords

Crustal anatexis Migmatite Metatexite Diatexite Sierras Pampeanas 

Notes

Acknowledgements

We acknowledge professors Roberto Martino and Alfons Berger for helpful and thoughtful reviews which improved the manuscript. This research is supported by FONCyT grant PICT00453/10 and PICT0958/14. Field work was partly funded by grants PIP 18/C485 of the Universidad Nacional de Río Cuarto, Argentina. We thank Prof. Jesús de la Rosa Díaz for measuring the trace element abundances using ICP-MS facilities at Universidad de Huelva, España.

Supplementary material

531_2019_1711_MOESM1_ESM.doc (105 kb)
Supplementary material 1 (DOC 105 kb)
531_2019_1711_MOESM2_ESM.doc (206 kb)
Supplementary material 2 (DOC 205 kb)
531_2019_1711_MOESM3_ESM.doc (448 kb)
Supplementary material 3 (DOC 447 kb)

References

  1. Aceñolaza FG, Toselli AJ (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. Mem II Congr Latinoam Geol Actas 2:755–764Google Scholar
  2. Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25Google Scholar
  3. Álvarez-Valero AM, Kriegsman LM (2007) Crustal thinning and mafic underplating beneath the Neogene Volcanic Province (Betic Cordillera, SE Spain): evidence from crustal xenoliths. Terra Nova 19:266–271Google Scholar
  4. Álvarez-Valero AM, Waters DJ (2010) Partially melted xenoliths as insight into sub-volcanic processes: evidence from the Neogene magmatic event of the Betic Cordillera, SE Spain. J Petrol 51:973–991Google Scholar
  5. Arzi A (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184Google Scholar
  6. Barbero L, Villaseca C (1992) The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Earth Environ Sci Trans R Soc Edinb 83:127–138Google Scholar
  7. Barbey P, Macaudiere J, Nzenti JP (1990) High-pressure dehydration melting of metapelites: evidence from the migmatites of Yaounde (Cameroon). J Petrol 31:401–427Google Scholar
  8. Bea F (1989) A method for modelling mass balance in partial melting and anatectic leucosome segregation. J Metamorph Geol 7:619–628Google Scholar
  9. Bea F (1991) Geochemical modeling of low melt-fraction anatexis in a peraluminous system: the Pena Negra Complex (central Spain). Geochim Cosmochim Acta 55:1859–1874Google Scholar
  10. Bea F (1996a) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552Google Scholar
  11. Bea F (1996b) Controls on the trace element composition of crustal melts. GSA Spec Pap 315:33–41Google Scholar
  12. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334Google Scholar
  13. Brown M (2001) Orogeny, migmatites and leucogranites: a review. J Earth Syst Sci 110:313–336Google Scholar
  14. Brown M (2013) Granite: From genesis to emplacement. GSA Bull 125:1079–1113Google Scholar
  15. Carrington DP, Watt GR (1995) A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem Geol 122:59–76Google Scholar
  16. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279Google Scholar
  17. Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138Google Scholar
  18. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306Google Scholar
  19. Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371Google Scholar
  20. Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803Google Scholar
  21. de Brito Neves BB, Campos Neto MDC, Fuck RA (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22:155–166Google Scholar
  22. de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335Google Scholar
  23. Diener JF, White RW, Hudson TJ (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos 200:212–225Google Scholar
  24. Do Campo M, Nieto M (2003) Transmission electron microscopy study of the very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Mineral 38:459–481Google Scholar
  25. Do Campo M, Ribeiro Guevara S (2005) Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. J S Am Earth Sci 19:143–153Google Scholar
  26. Drobe M, López de Luchi ML, Steenken A, Wemmer K, Naumann R, Frei R, Siegesmund S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. Int J Earth Sci 100:631–657Google Scholar
  27. Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100(B8):15581–15591Google Scholar
  28. Glen RA, Percival IG, Quinn CD (2009) Ordovician continental margin terranes in the Lachlan Orogen, Australia: implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics 28(6):TC6012Google Scholar
  29. Gordillo CE (1984) Migmatitas cordieríticas de la Sierra de Córdoba, condiciones físicas de la migmatización. Academia Nacional de Ciencias de Córdoba Miscelánea 68:1–40Google Scholar
  30. Greenfield JE, Clarke GL, Bland M, Clark DJ (1996) In-situ migmatite and hybrid diatexite at Mt Stafford, central Australia. J Metamorph Geol 14:413–426Google Scholar
  31. Guereschi AB, Martino RD (2008) Field and textural evidence of two migmatization events in the Sierras de Córdoba, Argentina. Gondwana Res 13:176–188Google Scholar
  32. Guernina S, Sawyer EW (2003) Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. J Metamorph Geol 21:181–201Google Scholar
  33. Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43Google Scholar
  34. Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Res 58:820–829Google Scholar
  35. Holland TJB, Powell R (2003) Activity–compositions relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501Google Scholar
  36. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383Google Scholar
  37. Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. J Petrol 32:935–958Google Scholar
  38. Ježek P, Willner AP, Aceñolaza FG, Miller H (1985) The Puncoviscana trough—a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. Geol Rundsch 74:573–584Google Scholar
  39. Johannes W, Gupta L (1982) Origin and evolution of migmatites. Contrib Mineral Petrol 79:114–123Google Scholar
  40. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, BerlinGoogle Scholar
  41. Johnson TE, White RW, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Metamorph Geol 26:837–853Google Scholar
  42. Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764Google Scholar
  43. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212Google Scholar
  44. Kisters AFM, Ward RA, Anthonissen CJ, Vietze ME (2009) Melt segregation and far-field melt transfer in the mid-crust. J Geol Soc Lond 166:905–918Google Scholar
  45. Lira R, Millone HA, Kirschbaum AM, Moreno RS (1997) Calc-alkaline arc granitoid activity in the Sierra Norte-Ambargasta Ranges, central Argentina. J S Am Earth Sci 10:157–177Google Scholar
  46. Martin D, Nokes R (1988) Crystal settling in a vigorously converting magma chamber. Nature 332:534Google Scholar
  47. Martino RD, Guereschi (2014a) Las migmatitas de las sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 67–94Google Scholar
  48. Martino RD, Guereschi AB (2014b) La estructura neoproterozoica-paleozoica inferior del complejo metamórfico de las Sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 95–128Google Scholar
  49. Martino RD, Kraemer P, Escayola M, Giambastiani M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32° S. Rev Asoc Geol Argent 50:60–77Google Scholar
  50. Martino RD, Guereschi AB, Sfragulla JA (2009) Petrology, structure and tectonic significance of the Tuclame banded schists in the Sierras Pampeanas of Córdoba and its relationship with the metamorphic basement of northwestern Argentina. J S Am Earth Sci 27:280–298Google Scholar
  51. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2, Paper 2000GC000109Google Scholar
  52. Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France. J Petrol 42:487–505Google Scholar
  53. Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146Google Scholar
  54. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196Google Scholar
  55. Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. Marine clastic sedimentology. Springer, Berlin, pp 1–38Google Scholar
  56. Omarini RH, Sureda RJ, Götze HJ, Seilacher A, Pflüger F (1999) Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Int J Earth Sci 88:76–97Google Scholar
  57. Otamendi JE (2001) Cordierita en migmatitas del norte de la sierra de Comechingones, Córdoba: génesis e implicacias geológicas. Rev Asoc Geol Argent 56:341–343Google Scholar
  58. Otamendi JE, Patiño Douce AE (2001) Partial melting of aluminous metagreywackes in the northern Sierra de Comechingones, central Argentina. J Petrol 42:1751–1772Google Scholar
  59. Otamendi JE, Patiño Douce AE, Demichelis AH (1999) Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Argentina. J Metamorph Geol 17:415–434Google Scholar
  60. Otamendi JE, Castellarini PA, Fagiano MR, Demichelis AH, Tibaldi AM (2004) Cambrian to Devonian geologic evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: evidence for the development and exhumation of continental crust on the proto-Pacific margin of Gondwana. Gondwana Res 7:1143–1155Google Scholar
  61. Patiño Douce AE (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. GSA Spec Pap 315:11–21Google Scholar
  62. Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710Google Scholar
  63. Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218Google Scholar
  64. Pickering KT, Clark JD, Smith RDA, Hiscott RN, Lucchi FR, Kenyon NH (1995) Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. Atlas of deep water environments. Springer, Berlin, pp 1–10Google Scholar
  65. Piñán-Llamas A, Simpson C (2006) Deformation of Gondwana margin turbidites during the Pampean orogeny, north-central Argentina. GSA Bull 118:1270–1279Google Scholar
  66. Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179Google Scholar
  67. Ramos VA, Martino RD, Otamendi JE, Escayola MP (2014) Evolución geotectónica de las Sierras Pampeanas Orientales. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, pp 965–967Google Scholar
  68. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, Geological Society London, Spec Pub 142, pp 181–217Google Scholar
  69. Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316Google Scholar
  70. Redler C, White RW, Johnson TE (2013) Migmatites in the Ivrea Zone (NW Italy): constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175–176:40–53Google Scholar
  71. Renner J, Evans B, Hirth G (2000) On the rheologically critical melt fraction. Earth Planet Sci Lett 181:585–594Google Scholar
  72. Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28Google Scholar
  73. Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473Google Scholar
  74. Sawyer EW (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32:701–738Google Scholar
  75. Sawyer EW (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J Petrol 39:1147–1167Google Scholar
  76. Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist, Special Pub 9. NRC Research Press, OttawaGoogle Scholar
  77. Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234Google Scholar
  78. Schwartz JJ, Gromet LP, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. J Geol 116:39–61Google Scholar
  79. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243Google Scholar
  80. Siegesmund S, Steenken A, Martino RD, Wemmer K, López de Luchi MG, Frei R, Presnyakov S, Guereschi A (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci 99:1199–1226Google Scholar
  81. Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823Google Scholar
  82. Spicer EM, Stevens G, Buick IS (2004) The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contrib Mineral Petrol 148:160–179Google Scholar
  83. Steenken A, López de Luchi ML, Dopico CM, Drobe M, Wemmer K, Siegesmund S (2011) The Neoproterozoic–early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int J Earth Sci 100:465–488Google Scholar
  84. Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300:200–220Google Scholar
  85. Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128:352–370Google Scholar
  86. Vaughan AP, Pankhurst RJ (2008) Tectonic overview of the West Gondwana margin. Gondwana Res 13:150–162Google Scholar
  87. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276Google Scholar
  88. Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393Google Scholar
  89. Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37:1579–1600Google Scholar
  90. Villaseca C, Romera CM, de la Rosa J, Barbero L (2003) Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chem Geol 200:293–323Google Scholar
  91. Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253–271Google Scholar
  92. Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. GSA Spec Pap 315:43–56Google Scholar
  93. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  94. Watson EB, Vicenzi EP, Rapp RP (1989) Inclusion/host relations involving accessory minerals in high-grade metamorphic and anatectic rocks. Contrib Mineral Petrol 101:220–231Google Scholar
  95. Watt GR, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Mineral Petrol 114:550–566Google Scholar
  96. White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55Google Scholar
  97. White RW, Powell R, Clarke GL (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. J Petrol 44:1937–1960Google Scholar
  98. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527Google Scholar
  99. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286Google Scholar
  100. Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58:4127–4145Google Scholar
  101. Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: Differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775Google Scholar
  102. Yakymchuk C, Brown M (2014a) Consequences of open-system melting in tectonics. J Geol Soc Lond 171:21–40Google Scholar
  103. Yakymchuk C, Brown M (2014b) Behaviour of zircon and monazite during crustal melting. J Geol Soc Lond 171:465–479Google Scholar
  104. Zimmermann U (2005) Provenance studies of very low-to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. Geol Soc Lond Spec Publ 246:381–416Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de GeologíaUniversidad Nacional de Río Cuarto, Campus UniversitarioRío CuartoArgentina
  2. 2.Departamento de GeologíaUniversidad de SalamancaSalamancaSpain

Personalised recommendations