Advertisement

Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria)

  • Matthias HaukeEmail author
  • Nikolaus Froitzheim
  • Thorsten J. Nagel
  • Irena Miladinova
  • Kathrin Fassmer
  • Raúl O. C. Fonseca
  • Peter Sprung
  • Carsten Münker
Original Paper
  • 33 Downloads

Abstract

The Eo-Alpine high-pressure belt in the Austroalpine nappes consists of pre-Mesozoic basement rocks overprinted by eclogite-facies metamorphism during the Late Cretaceous. Parts of this basement were already eclogitized during the Variscan orogeny. Lu–Hf geochronology allowed to identify two high-pressure events in an eclogite body in the Schobergruppe, an Austroalpine basement complex south of the Tauern Window. Two samples from closely neighboring outcrops were studied. Both contain two garnet generations. In one sample, PRI3, garnet belongs almost exclusively to the younger (Alpine) generation with only rare preservation of relic cores. In the other sample, PRI4, Variscan garnet is merely coated by a thin rim of the second, Alpine generation, which is in equilibrium with the high-pressure matrix assemblage. In PRI3, two-point garnet-whole rock ages scatter between ~ 97 and ~ 104 Ma, reflecting Alpine garnet growth with minor contamination by a Variscan component. In PRI4, two-point isochrons yield ages between ~ 300 and ~ 313 Ma. The limited spread in these ages suggests minor contamination by Alpine garnet rims. We propose 97 Ma as the maximum age for Alpine metamorphism, which is close to previously determined ages from other parts of the high-pressure belt, and 313 Ma as a minimum age for Variscan metamorphism. Thermodynamic modelling infers that eclogite-facies conditions were reached in both events; during the Late Cretaceous, these were ca. 1.9 GPa/650 °C. Variscan high-pressure conditions in PRI4 are inferred from the amount of garnet in the sample, which indicates at least 1.6 GPa. We propose that the occurrence of Alpine versus Variscan garnet in eclogites depends on the intensity of Variscan and post-Variscan retrogression: the more prograde, Variscan garnet was removed during retrogression, the more garnet grew during the Alpine cycle.

Keywords

Eclogites High-pressure metamorphism Lu–Hf geochronology Eastern Alps Austroalpine basement Variscan orogeny Eo-Alpine orogeny 

Notes

Acknowledgements

Careful reviews by Franz Neubauer and Bernhard Schulz are gratefully acknowledged. Wolf-Christian Dullo is thanked for editorial handling. Supported by German Science Foundation (DFG) Grant No. FR700/17 to N. Froitzheim. This is contribution no. 58 of the Bonn LA-ICPMS lab.

References

  1. Baldwin JA, Powell R, Brown M, Moraes R, Fuck A (2005) Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil. J Metamorph Geol 23:511–531CrossRefGoogle Scholar
  2. Baxter EF, Scherer EE (2013) Garnet geochronology: timekeeper of tectonometamorphic processes. Elements 9:433–438CrossRefGoogle Scholar
  3. Biino GG, Marquer D, Nussbaum C (1997) Alpine and pre-Alpine subduction events in polycyclic basements of the Swiss Alps. Geology 25:751–754CrossRefGoogle Scholar
  4. De Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652CrossRefGoogle Scholar
  5. De Capitani, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Amer Mineral 95:1006–1016CrossRefGoogle Scholar
  6. Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Miner Petrol 111:74–86CrossRefGoogle Scholar
  7. Clar E (1927) Ein Beitrag zur Geologie der Schobergruppe bei Lienz in Tirol. Mitt Naturwiss Ver Steiermark 63:72–90Google Scholar
  8. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamor Geol 20:683–696CrossRefGoogle Scholar
  9. Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 25:631–656CrossRefGoogle Scholar
  10. Duchêne S, Blichert-Toft J, Luais B, Telouk P, Lardeaux JM, Albarède F (1997) The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  11. Faryad SW, Melcher F, Hoinkes G, Puhl J, Meisel T, Frank W (2002) Relics of eclogite facies metamorphism in the Austroalpine basement, Hochgrössen (Speik complex), Austria. Miner Petrol 74:49–73CrossRefGoogle Scholar
  12. Fassmer K, Klonowska I, Walczak K, Andersson B, Froitzheim N, Majka J, Fonseca ROC, Münker C, Janák M, Whitehouse M (2017) Middle Ordovician subduction of continental crust in the Scandinavian Caledonides—an example from Tjeliken, Seve Nappe Complex, Sweden. Contrib Miner Petrol 172:103.  https://doi.org/10.1007/s00410-017-1420-7 CrossRefGoogle Scholar
  13. Fassmer K, Obermüller G, Nagel TJ, Kirst F, Froitzheim N, Sandmann S, Miladinova I, Fonseca ROC, Münker C (2016) High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy). Lithos 252:145–159CrossRefGoogle Scholar
  14. Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60:121–139CrossRefGoogle Scholar
  15. Green ECR, Holland TJB, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Amer Mineral 92:1181–1189CrossRefGoogle Scholar
  16. Habler G, Thöni M, Sölva H (2006) Tracing the high pressure stage in the polymetamorphic Texel Complex (Austroalpine basement unit, Eastern Alps): P–T–t–d constraints. Miner Petrol 88:269–296CrossRefGoogle Scholar
  17. Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158CrossRefGoogle Scholar
  18. Herwartz D, Münker C, Scherer EE, Nagel TJ, Pleuger J, Froitzheim N (2008) Lu–Hf garnet geochronology of eclogites from the Balma Unit (Pennine Alps): implications for Alpine paleotectonic reconstructions. Swiss J Geosci 101(Supplement 1):S173–S189CrossRefGoogle Scholar
  19. Hoinkes G, Koller F, Rantitsch G, Dachs E, Höck V, Neubauer F, Schuster R (1999) Alpine metamorphism of the Eastern Alps. Schweiz Miner Petrogr Mitt 79:155–181Google Scholar
  20. Hoinkes G, Kostner A, Thöni M (1991) Petrologic constraints for Eoalpine eclogite facies metamorphism in the Austroalpine Ötztal basement. Miner Petrol 43:237–254CrossRefGoogle Scholar
  21. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J metamorph Geol 16:309–343CrossRefGoogle Scholar
  22. Janák M, Cornell D, Froitzheim N, De Hoog JCM, Broska I, Vrabec M, Hurai V (2009) Eclogite-hosting metapelites from the Pohorje Mountains (Eastern Alps): P-T evolution, zircon geochronology and tectonic implications. Eur J Miner 21:1191–1212CrossRefGoogle Scholar
  23. Janák M, Froitzheim N, Lupták B, Vrabec M, Ravna EJK (2004) First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: tracing deep continental subduction in the Eastern Alps. Tectonics 23:TC5014CrossRefGoogle Scholar
  24. Janák M, Froitzheim N, Yoshida K, Sasinková V, Nosko M, Kobayashi T, Hirajima T, Vrabec M (2015) Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. J Metamorph Geol 33:495–512CrossRefGoogle Scholar
  25. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  26. Kirchenbaur M, Pleuger J, Jahn-Awe S, Nagel TJ, Froitzheim N, Fonseca ROC, Münker C (2012) Timing of high-pressure metamorphic events in the Bulgarian Rhodopes from Lu–Hf garnet geochronology. Contrib Miner Petrol 163:897–921CrossRefGoogle Scholar
  27. Kirst F, Sandmann S, Nagel TJ, Froitzheim N, Janák M (2010) Tectonic evolution of the southeastern part of the Pohorje Mountains (Eastern Alps, Slovenia). Geol Carpathica 61:451–461CrossRefGoogle Scholar
  28. Kohn MJ (2009) Models of garnet differential geochronology. Geochim Cosmochim Acta 73:170–182CrossRefGoogle Scholar
  29. Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Miner 19:431–438CrossRefGoogle Scholar
  30. Konzett J, Krenn K, Hauzenberger C, Whitehouse M, Hoinkes G (2012) High-pressure tourmaline formation and fluid activity in Fe–Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. J Petrol 53:99–125CrossRefGoogle Scholar
  31. Krenn E, Schulz B, Finger F (2012) Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window: evidence for Variscan, Permian and Eo-Alpine metamorphic events. Swiss J Geosci 105:343–360CrossRefGoogle Scholar
  32. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28:TC2003CrossRefGoogle Scholar
  33. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ, Lapen TL (2007) Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem Geol 242:137–154CrossRefGoogle Scholar
  34. Ladenhauf C, Armstrong R, Konzett J, Miller C (2001) The timing of pre-Alpine high-pressure metamorphism in the Eastern Alps: constraints from U-Pb SHRIMP dating of zircons from the Austroalpine Silvretta nappe. J Conf Abstr (EUG XI) 6:600Google Scholar
  35. Lagos M, Scherer E, Tomaschek F, Münker C, Keiter M, Berndt J, Ballhaus C (2007) High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece. Chem Geol 243:16–35CrossRefGoogle Scholar
  36. Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultrahigh-pressure terrane: an example from Lago di Cignana, Western Alps, Italy. Earth Planet Sci Lett 215:57–72CrossRefGoogle Scholar
  37. Linner M (1999) Die P–T–t Entwicklung der Eklogite im Schoberkristallin als Beleg für frühalpidische kontinentale Subduktion im Ostalpinen Kristallin. Dissertation, Universität WienGoogle Scholar
  38. Linner M, Reitner JM, Pavlik W (2013) Geologische Karte der Republik Österreich Blatt 179 Lienz. -in: Geologische Karte der Republik Österreich 1:50.000. Verlag der Geologischen BundesanstaltGoogle Scholar
  39. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904CrossRefGoogle Scholar
  40. Ludwig KR (2008) Isoplot 3.7, a geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication No. 4, BerkeleyGoogle Scholar
  41. Miller C, Thöni M (1995) Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm–Nd vs. Rb–Sr systematics. Chem Geol 122:199–225CrossRefGoogle Scholar
  42. Miller C, Thöni M (1997) Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data. Chem Geol 137:283–310CrossRefGoogle Scholar
  43. Miller C, Mundil R, Thöni M, Konzett J (2005a) Refining the timing of eclogite metamorphism: a geochemical, petrological, Sm–Nd and U–Pb case study from the Pohorje Mountains, Slovenia (Eastern Alps). Contrib Miner Petrol 150:70–84CrossRefGoogle Scholar
  44. Miller C, Thöni M, Konzett J, Kurz W, Schuster R (2005b) Eclogites from the Koralpe and Saualpe type-localities, Eastern Alps, Austria. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150:227–263Google Scholar
  45. Missoni S, Gawlick H-J (2011) Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). Int J Earth Sci 100:1605–1631CrossRefGoogle Scholar
  46. Münker C, Weyer S, Scherer EE, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosys.  https://doi.org/10.1029/2001GC000183 Google Scholar
  47. Nagel TJ, Herwartz D, Rexroth S, Münker C, Froitzheim N, Kurz W (2013) Lu–Hf dating, petrography and tectonic implications of the youngest Alpine eclogites (Tauern Window, Austria). Lithos 170–171:179–190CrossRefGoogle Scholar
  48. Neubauer F, Dallmeyer RD, Takasu A (1999) Conditions of eclogite formation and age of retrogression within the Sieggraben unit, Eastern Alps: implications for Alpine-Carpathian tectonics. Schweiz Miner Petrogr Mitt 79:297–307Google Scholar
  49. Neubauer F, Genser J, Handler R (2000) The Eastern Alps: result of a two-stage collision process. Mitt Öster Geol Ges 92:117–134Google Scholar
  50. Oberhänsli R, Bousquet R, Engi Martin, Goffé B, Gosso G, Handy MR, Höck V, Koller F, Lardeaux JM, Polino R, Rossi PL, Schuster R, Schwartz S, Spalla I (2004) Metamorphic structure of the Alps. [Map]. Commission for the Geological Map of the World, ParisGoogle Scholar
  51. Otamendi JE, de la Rosa JD, Patino Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162CrossRefGoogle Scholar
  52. Petersen KD, Schiffer C (2016) Wilson cycle passive margins: control of orogenic inheritance on continental breakup. Gondwana Res 39:131–144CrossRefGoogle Scholar
  53. Putiš M, Li XH, Yang YH, Li QL, Nemec O, Ling X, Koller F, Balen D (2018) Permian pyroxenite dykes in harzburgite with signatures of the mantle, subduction channel and accretionary wedge evolution (Austroalpine unit, eastern alps). Lithos 314–315:165–186Google Scholar
  54. Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991) Lateral extrusion in the eastern Alps, Part 2: structural analysis. Tectonics 10:257–271CrossRefGoogle Scholar
  55. Roda M, Spalla MI, Marotta AM (2012) Integration of natural data within a numerical model of ablative subduction: a possible interpretation for the Alpine dynamics of the Austroalpine crust. J Metamorph Geol 30:973–996CrossRefGoogle Scholar
  56. Ryan PD, Dewey JF (1997) Continental eclogites and the Wilson cycle. J Geol Soc 154:437–442CrossRefGoogle Scholar
  57. Sandmann S, Herwartz D, Kirst F, Froitzheim N, Nagel TJ, Fonseca ROC, Münker C, Janák M (2016) Timing of eclogite-facies metamorphism of mafic and ultramafic rocks from the Pohorje Mountains (Eastern Alps, Slovenia) based on Lu–Hf garnet geochronometry. Lithos 261:576–585CrossRefGoogle Scholar
  58. Sandmann S, Nagel TJ, Froitzheim N, Ustaszewski K, Münker C (2015) Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova 27:285–291CrossRefGoogle Scholar
  59. Sandmann S, Nagel TJ, Herwartz D, Fonseca ROC, Kurzawski RM, Münker C, Froitzheim N (2014) Lu–Hf garnet systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula Nappe (Central Alps) from eclogite-facies conditions. Contrib Miner Petrol 168:1075CrossRefGoogle Scholar
  60. Scherer EE, Münker C, Mezger K (2001) Calibration of the Lutetium–Hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  61. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117CrossRefGoogle Scholar
  62. Schmidt A, Mezger K, O’Brien PJ (2011) The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane: constraints from Lu–Hf garnet geochronology. Lithos 125:743–756CrossRefGoogle Scholar
  63. Schulz B (1993) Mineral chemistry, geothermobarometry and pre-Alpine high-pressure metamorphism of eclogitic amphibolites and mica schists from the Schobergruppe, Austroalpine Basement, Eastern Alps. Miner Mag 57:189–202CrossRefGoogle Scholar
  64. Schulz B, Bombach K (2003) Single zircon Pb–Pb geochronology of the Early-Paleozoic magmatic evolution in the Austroalpine basement to the South of the Tauern Window. Jb Geol B-A (Wien) 143:303–321Google Scholar
  65. Schulz B, Bombach K, Pawlig S, Brätz H (2004) Neoproterozoic to Early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (Eastern Alps). Int J of Earth Sci 93:824–843CrossRefGoogle Scholar
  66. Schulz B, Klemd R, Brätz H (2006) Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim Cosmochim Acta 70:697–710CrossRefGoogle Scholar
  67. Schulz B, Steenken A, Siegesmund S (2008) Geodynamic evolution of an Alpine terrane–the Austroalpine basement to the south of the Tauern Window as a part of the Adriatic Plate (eastern Alps). In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the Alpine-Dinaride-Carpathian system. Geological Society of London Special Publications, vol 298, pp 5–43Google Scholar
  68. Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606CrossRefGoogle Scholar
  69. Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology. Contrib Miner Petrol 152:703–720CrossRefGoogle Scholar
  70. Skora S, Mahlen NJ, Johnson CM, Baumgartner LP, Lapen TJ, Beard BL, Szilvagyi ET (2015) Evidence for protracted metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. J Metamorph Geol 33:711–734CrossRefGoogle Scholar
  71. Stüwe K, Schuster R (2010) Initiation of subduction in the Alps: continent or ocean? Geology 38:175–178CrossRefGoogle Scholar
  72. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324CrossRefGoogle Scholar
  73. Sölva H, Grasemann B, Thöni M, Thiede RC, Habler G (2005) The Schneeberg normal fault zone: normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria). Tectonophysics 401:143–166CrossRefGoogle Scholar
  74. Thöni M (2006) Dating eclogite-facies metamorphism in the Eastern Alps—approaches, results, interpretations: a review. Miner Petrol 88:123–148CrossRefGoogle Scholar
  75. Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts—Sm–Nd, Rb–Sr, and Pb–Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia, Styria, southeastern Austria). Geochim Cosmochim Acta 56:347–368CrossRefGoogle Scholar
  76. Thöni M, Miller C, Blichert-Toft J, Whitehouse MJ, Konzett J, Zanetti A (2008) Timing of high-pressure metamorphism and exhumation of the eclogite type-locality (Kupplerbrunn–Prickler Halt, Saualpe, southeastern Austria): constraints from correlations of the Sm–Nd, Lu–Hf, U–Pb and Rb–Sr isotopic systems. J Metamorph Geol 26:561–581CrossRefGoogle Scholar
  77. Troll G, Forst R, Söllner F, Brack W, Köhler H, Müller-Sohnius D (1976) Über Bau, Alter und Metamorphose des Altkristallins der Schobergruppe, Osttirol. Geol Rundsch 65:483–511CrossRefGoogle Scholar
  78. Tumiati S, Thöni M, Nimis P, Martin S, Mair V (2003) Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten Zone): geochronology and new petrological constraints. Earth Planet Sci Lett 210:509–526CrossRefGoogle Scholar
  79. Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem Geophys Geosys 5:Q11002CrossRefGoogle Scholar
  80. Vielzeuf D, Baronnet A, Perchuk AL, Laporte D, Baker MB (2007) Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib Miner Petrol 154:153–170CrossRefGoogle Scholar
  81. Vrabec M, Janák M, Froitzheim N, De Hoog JCM (2012) Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia). Lithos 144–145:40–55CrossRefGoogle Scholar
  82. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamor Geol 25:511–527CrossRefGoogle Scholar
  83. Wilson JT (1966) Did the Atlantic close and then re-open? Nature 211:676–681CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Institute of Geosciences and MeteorologyUniversity of BonnBonnGermany
  2. 2.Department of GeoscienceUniversity of AarhusAarhus CDenmark
  3. 3.Institute of Geology and MineralogyUniversity of CologneCologneGermany
  4. 4.Paul Scherrer Institute (PSI)VilligenSwitzerland
  5. 5.Institute of Earth Sciences, NAWI Graz GeocenterUniversity of GrazGrazAustria

Personalised recommendations