International Journal of Earth Sciences

, Volume 108, Issue 3, pp 963–987 | Cite as

87Sr/86Sr applied to age discrimination of the Palaeozoic carbonates of the Ossa-Morena zone (SW Iberia Variscides)

  • N. MoreiraEmail author
  • J. Pedro
  • J. F. Santos
  • A. Araújo
  • R. Dias
  • S. Ribeiro
  • J. Romão
  • J. Mirão
Original Paper


Four distinct Palaeozoic episodes of marine carbonate sedimentation are reported in the Ossa-Morena Zone (SW Iberian Variscides). Among them, the Cambrian and the Devonian episodes are those that are well represented in the Portuguese domains of the Ossa-Morena zone. In this zone, the strong Variscan deformation and metamorphic recrystallization obliterate the biostratigraphic contents of some carbonate local successions and their ages have been based on lithostratigraphic correlations. The 87Sr/86Sr values for the Ossa-Morena zone carbonate rocks allow to make an isotopic–lithostratigraphic correlation, based on the comparison between strontium ratios of marine carbonate rocks without chronological data and carbonate rocks with a good age control. Moreover, the established 87Sr/86Sr fingerprints of the marine carbonate episodes from Ossa-Morena zone should be simultaneously correlated with the worldwide seawater 87Sr/86Sr curve. Despite the interaction of the marine carbonate sedimentation with late secondary dolomitization processes or with high-temperature metamorphic/metasomatic fluids, which increases the primary 87Sr/86Sr ratios, this methodology allows to define two main distinct clusters of 87Sr/86Sr for the Ossa-Morena zone marine carbonates: a Devonian cluster with strontium ratios lower than 0,708000; and a Cambrian cluster ranging from 0.708777 to 0.708299 (0.708575 ± 0,000161), that can reach 0.709227–0.708866 (0.709087 ± 0,000118) if incipient late secondary dolomitization or high-temperature metamorphism/metasomatism operated. The obtained 87Sr/86Sr isotopic ratios corroborate the lithostratigraphic correlations between the carbonate rocks of Abrantes, Assumar, Estremoz, Viana-Alvito, Ficalho and Escoural successions with the Ovetian–Marianian limestones of Alter-do-Chão–Elvas Succession. Moreover, this methodology allows to establish the isotopic discrimination between the Upper Silurian–Devonian limestones of Ferrarias, Barrancos and Bencatel successions and the marbles of Estremoz Succession.


Ossa-Morena zone Carbonate sedimentation Iberian variscides 87Sr/86Sr ratio 



We are grateful to L. A. Eguíluz and an anonymous referee for their insightful suggestions that contribute to improve the quality of the final manuscript. The editorial work of W.C. Dullo should be also emphasized. N. Moreira acknowledges Gulbenkian Foundation for the financial support through the “Programa de Estímulo à Investigação 2011” and Fundação para a Ciência e a Tecnologia (FCT; Portuguese Science and Technology Foundation), through the PhD grant (SFRH/BD/80580/2011). N. Moreira, R. Dias, J. Pedro and A. Araujo acknowledge the funding provided by the Institute of Earth Sciences (ICT), under contract with FCT (UID/GEO/04683/2013) and to COMPETE POCI-01-0145-FEDER-007690. This work is a contribution to the project ALT20-03-0145-FEDER-000028, funded by Alentejo 2020 through the FEDER / FSE / FEEI. J. F. Santos and S. Ribeiro, received financial support from the GeoBioTec research unit, which is funded, by FCT, through project UID/GEO/04035/2013.


  1. Ábalos B, Ibarguchi G, Eguiluz L (1991) Structural and metamorphic evolution of the Almaden de la Plata Core (Seville, Spain) in relation to syn-metamorphic shear between the Ossa-Morena and South Portuguese zones of the Iberian Variscan fold belt. Tectonophysics 191:365–387. CrossRefGoogle Scholar
  2. Álvaro JJ, Bellido F, Gasquet D, Pereira MF, Quesada C, Sánchez-García T (2014) Diachronism in the late Neoproterozoic–Cambrian arc-rift transition of North Gondwana: a comparison of Morocco and the Iberian Ossa-Morena zone. J Afr Earth Sci 98:113–132. CrossRefGoogle Scholar
  3. Andrade AAS (1984) Sobre a Originalidade (ou talvez não) do Maciço de Beja no Sudoeste Peninsular. Memórias e Notícias 97:115–132Google Scholar
  4. Araújo A, Piçarra J, Borrego J, Pedro J, Oliveira JT (2013) As regiões central e sul da Zona de Ossa-Morena. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 509–549Google Scholar
  5. Ausich WI, Kammer TW, Rhenberg EC, Wright DF (2015) Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology 58:937–952. CrossRefGoogle Scholar
  6. Ayan T (1965) Chemical staining methods used in the identification of carbonate minerals. B Miner Res Expl 65:133–147Google Scholar
  7. Azmy K, Veizer J, Wenzal B, Bassett M, Cooper P (1999) Silurian strontium isotope stratigraphy. Geol Soc Am Bull 111:475–483.;2 CrossRefGoogle Scholar
  8. Boogard M (1972) Conodont faunas from Portugal and Southwestern Spain. Part 1: A Middle Devonian fauna from near Montemor-o-Novo. Scr Geol 13:1–11Google Scholar
  9. Brasier MD, Shields GA, Kuleshov VN, Zhegallo EA (1996) Integrated chemo- and biostratigraphic calibration of early animal evolution: neoproterozoic-early Cambrian of southwest Mongolia. Geol Magn 133:445–485. CrossRefGoogle Scholar
  10. Bucher K, Grapes M (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer, New YorkCrossRefGoogle Scholar
  11. Burke WH., Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519.;2 CrossRefGoogle Scholar
  12. Chichorro M (2006) Estrutura do Sudoeste da Zona de Ossa-Morena: Área de Santiago de Escoural—Cabrela (Zona de Cisalhamento de Montemor-o-Novo, Maciço de Évora). Ph.D. thesis (unpublished), Universidade de Évora, Portugal, p 502Google Scholar
  13. Chichorro M, Pereira MF, Diaz-Azpiroz M, Williams IS, Fernandez C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113. CrossRefGoogle Scholar
  14. Coelho A, Gonçalves F (1970) Rocha hiperalcalina de Estremoz. Bol Soc Geol Port XVII:181–185Google Scholar
  15. Conde LN, Andrade AAS (1974) Sur la faune meso et/ou néodévonienne des calcaires du Monte das Cortes, Odivelas (Massif de Beja). Memórias e Notícias 78:141–146Google Scholar
  16. Denison RE, Koepnick RB, Burke WH, Hetherington EA, Fletcher A (1997) Construction of the Silurian and Devonian seawater 87Sr/86Sr curve. Chem Geol 140:109–121. CrossRefGoogle Scholar
  17. Denison RE, Koepnick RB, Burke WH, Hetherington EA (1998) Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol 152:325–340. CrossRefGoogle Scholar
  18. Derry LA, Brasier MD, Corfield RM, Rozanov AY, Zhuravlev AY (1994) Sr and C isotope in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth Planet Sci Letters 128:671–681. CrossRefGoogle Scholar
  19. Dias R, Ribeiro A, Romão J, Coke C, Moreira N (2016) A Review of the arcuate structures in the Iberian Variscides; constraints and genetical models. Tectonophysics 681:170–194. CrossRefGoogle Scholar
  20. Gomes EMC, Fonseca PE (2006) Eventos metamórfico/metassomáticos tardi-variscos na região de Alvito (Alentejo, sul de Portugal). Cadernos Lab. Xeolóxico Laxe 31:67–85Google Scholar
  21. Gonçalves F (1972) Geological Map of Portugal at 1:50 000, 36-B (Estremoz). Serviços Geológicos de Portugal, LisbonGoogle Scholar
  22. Gozalo R, Liñán E, Palacios T, Gámez-Vintaned JA, Mayoral E (2003) The Cambrian of the Iberian Peninsula: an overview. Geol Acta 1:103–112Google Scholar
  23. Guensburg TE, Sprinkle J (2001) Earliest crinoids: new evidence for the origin of the dominant Paleozoic echinoderms. Geology 29(2):131–134.;2 CrossRefGoogle Scholar
  24. Hubbard CR, Snyder RL (1988) RIR-measurement and use in quantitative XRD. Powder Differ 3(2):74–77. CrossRefGoogle Scholar
  25. Hubbard CR, Evans EH, Smith DK (1976) The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Appl Cryst 9:169–174. CrossRefGoogle Scholar
  26. Julivert M, Fontbote JM, Ribeiro A, Conde LEN (1974) Memoria explicativa del mapa tectónico de la península Ibérica y baleares, escala 1:1 000 000. Inst Geol Min España pp 1–113Google Scholar
  27. Liao JC, Silvério G, Valenzuela Rios JJ, Machado G, Moreira N, Barreto P (2018) Hunting for Eifelian (Middle Devonian) Conodonts in the Pedreira da Engenharia Formation (Ossa-Morena zone, Portugal). In: 5th International Palaeontological Congress (abstract book). ParisGoogle Scholar
  28. Liñán E, Perejón A, Gozalo R, Moreno-Eiris E, Oliveira TJ (2004) The Cambrian system in Iberia. Cuadernos del Museo Geominero No 3, Instituto Geológico y Minero de España, Madrid, p 63Google Scholar
  29. LNEG (2010) Geological map of Portugal at 1:1 000 000, 3rd edn. Laboratório Nacional de Energia e Geologia, LisbonGoogle Scholar
  30. Lopes L (2007) O triângulo do mármore: estudo geológico. Monumentos 27:6–15Google Scholar
  31. Lotze F (1945) Zur Gliderung der Varisziden in der Iberischen Meseta. Geotekt Forsch 6:78–92Google Scholar
  32. Macdougall JD (1991) Radiogenic isotopes in seawater and sedimentary systems. Miner Assoc Can Short Course Handb 19:337–364Google Scholar
  33. Machado G, Hladil J (2010) On the age and significance of the limestone localities included in the Toca da Moura volcano-sedimentary Complex: preliminary results. In: Santos A, Mayoral E, Melendez G, Silva CMD, Cachão M (eds) III Congresso Iberico de Paleontologia/XXVI Jornadas de la Sociedad Espanola de Paleontologia. Publicaciones del Seminario de Paleontologia de Zaragoza, vol 9, pp 153–156Google Scholar
  34. Machado G, Hladil J, Koptikova L, Fonseca P, Rocha FT, Galle A (2009) The Odivelas limestone: evidence for a middle Devonian reef system in western Ossa-Morena zone. Geol Carpath 60(2):121–137. CrossRefGoogle Scholar
  35. Machado G, Hladil J, Koptikova L, Slavik L, Moreira N, Fonseca M, Fonseca P (2010) An Emsian-Eifelian carbonate-volcaniclastic sequence and the possible record of the basal choteč event in western Ossa-Morena zone, Portugal (Odivelas Limestone). Geol Belg 13:431–446Google Scholar
  36. Machado G, Moreira N, Silvério G (2018) Devonian sedimentation in the SW boundary of the Ossa-Morena zone; state of art and paleogeography. Vulcânica II:177–178Google Scholar
  37. Mackenzie FT, Morse JW (1992) Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta 56:3281–3295. CrossRefGoogle Scholar
  38. Maia M, Vicente S, Mirão J, Nogueira P (2018) Raman Spectroscopy applied to the study of fluid inclusions associated with the Cu mineralizations of Mociços and Ferrarias. XIV Congresso de Geoquímica dos Países de Língua Portuguesa, XIX Semana da Geoquímica (abstract book), pp 351–354Google Scholar
  39. Maloof AC, Porter SM, Moore JL, Dudás FO, Bowring SA, Higgins JA, Fike DA, Eddy MP (2010) The earliest Cambrian record of animals and ocean geochemical change. GSA Bull 122(11–12):1731–1774. CrossRefGoogle Scholar
  40. Matos JX, Filipe A (coord.) (2013) Carta de Ocorrências Mineiras do Alentejo e Algarve, Escala 1:400 000. Laboratorio Nacional de Energia e Geologia, 1st edn (ISBN: 978-989-675-029-9) Google Scholar
  41. McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358. CrossRefGoogle Scholar
  42. McArthur JM, Howarth RJ, Shields GA (2012) Strontium Isotope Stratigraphy. In: Gradstein FM, Ogg JG, Schmotz MD, Ogg GM (eds), A geologic time scale 2012 (Chap. 7). Elsevier, Amsterdam, pp 127–144Google Scholar
  43. Moita P, Santos JF, Pereira MF (2009) Layered granitoids: interaction between continental crust recycling processes and mantle-derived magmatism. Examples from the Évora Massif (Ossa-Morena zone, southwest Iberia, Portugal). Lithos 111(3–4):125–141. CrossRefGoogle Scholar
  44. Morbidelli P, Tucci P, Imperatori C, Polvorinos A, Preite Martinez M, Azzaro E, Hernandez MJ (2007) Roman quarries of the Iberian peninsula: “Anasol” and “Anasol”-type. Eur J Miner 19:125–135. CrossRefGoogle Scholar
  45. Moreira N (2012) Caracterização estrutural da zona de cisalhamento Tomar-Badajoz-Córdova no sector de Abrantes. MsC thesis (unpublished). University of Évora, Portugal, p 225Google Scholar
  46. Moreira N (2017) Evolução Geodinâmica dos sectores setentrionais da Zona de Ossa-Morena no contexto do Varisco Ibérico. Ph.D. thesis (unpublished). Universidade de Évora, Portugal, p 433Google Scholar
  47. Moreira N, Machado G (2019) Devonian sedimentation in western ossa-morena zone and its geodynamic significance. In: Quesada C, Oliveira JT (eds) The Geology of Iberia: a geodynamic approach, The variscan cycle, regional geology review series, vol 2, Springer, Berlin (in press)  Google Scholar
  48. Moreira N, Machado G, Fonseca PE, Silva JC, Jorge RCGS, Mata J (2010) The Odivelas Palaeozoic volcano-sedimentary sequence: implications for the geology of the Ossa-Morena Southwestern border. Comun Geol 97:129–146Google Scholar
  49. Moreira N, Araújo A, Pedro JC, Dias R (2014a) Evolução geodinâmica da Zona de Ossa-Morena no contexto do SW Ibérico durante o Ciclo Varisco. Comun Geol 101(I):275–278Google Scholar
  50. Moreira N, Dias R, Pedro JC, Araújo A (2014b) Interferência de fases de deformação Varisca na estrutura de Torre de Cabedal; sector de Alter-do-Chão–Elvas na Zona de Ossa-Morena. Comun Geol 101(I):279–282Google Scholar
  51. Moreira N, Pedro J, Romão J, Dias R, Araújo A, Ribeiro A (2015) The neoproterozoic-cambrian transition in Abrantes region (Central Portugal); litostratigraphic correlation with cambrian series of ossa-morena zone. Géologie de la France (Variscan 2015 special issue, Rennes) 2015(1):101–102Google Scholar
  52. Moreira N, Pedro J, Santos JF, Araújo A, Romão J, Dias R, Ribeiro A, Ribeiro S, Mirão J (2016) 87Sr/86Sr ratios discrimination applied to the main Paleozoic carbonate sedimentation in Ossa-Morena zone. In: IX Congreso Geológico de España (special volume). Geo-Temas 16(1):161–164Google Scholar
  53. Moreno F, Vegas R (1976) Tectónica de las séries ordovícias y siluricas en la región de Villanueva del Fresno. Estud Geol 32:47–52Google Scholar
  54. Mountjoy EW, Qing H, McNutt (1992) Strontium isotopic composition of Devonian dolomites, Western Canada Sedimentary Basin: significance of sources of dolomitizing fluids. Appl Geochem 7:59–75. CrossRefGoogle Scholar
  55. Nicholas CJ (1996) The Sr isotopic evolution of the oceans during the ‘Cambrian explosion’. J Geol Soc 153:243–254. CrossRefGoogle Scholar
  56. Oliveira JT (1984) Transversal Barrancos-Ficalho. Cadernos do Lab Xeolóxico de Laxe 8:347–357Google Scholar
  57. Oliveira JT, Oliveira V, Piçarra JM (1991) Traços gerais da evolução tectono-estratigráfica da Zona de Ossa Morena, em Portugal: síntese crítica do estado actual dos conhecimentos. Comun Serv Geol Port 77:3–26Google Scholar
  58. Oliveira JT, Relvas J, Pereira Z, Munhá J, Matos J, Barriga F, Rosa C (2013) O Complexo Vulcano-Sedimentar de Toca da Moura-Cabrela (Zona de Ossa Morena): evolução tectono-estratigráfica e mineralizações associadas. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 621–645Google Scholar
  59. Passchier CW, Trouw RAJ (2005) Microtectonics. 2nd edn. Springer, New YorkGoogle Scholar
  60. Pedro J, Araújo A, Fonseca P, Munhá J, Ribeiro A, Mateus A (2013) Cinturas ofiolíticas e metamorfismo de alta pressão no bordo SW da Zona de Ossa-Morena. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, vol I. Escolar Editora, Lisbon, pp 647–671Google Scholar
  61. Perdigão JC, Oliveira JT, Ribeiro A (1982) Notícia explicativa da folha 44-B (Barrancos) da Carta Geológica de Portugal à escala 1:50.000. Serviços Geológicos de Portugal, LisbonGoogle Scholar
  62. Pereira Z, Oliveira JT (2003) Estudo palinostratigráfico do sinclinal da Estação de Cabrela. Implicações tectonostratigráficas. Cienc Terra UNL 5:118–119Google Scholar
  63. Pereira MF, Silva JB (2001) The Northeast Alentejo Neoproterozoic-Lower Cambrian succession (Portugal): implications for regional correlations in the Ossa morena zone (Iberian Massif). Geogaceta 30:106–111Google Scholar
  64. Pereira Z, Oliveira V, Oliveira JT (2006a) Palynostratigraphy of the Toca da Moura and Cabrela Complexes, Ossa Morena zone, Portugal. Geodynamic implications. Rev Palaeobot Palyno 139:227–240. CrossRefGoogle Scholar
  65. Pereira MF, Medina J, Chichorro M, Linnemann U (2006b) Preliminary Rb-Sr and Sm-Nd isotope geochemistry on Ediacaran and Early Cambrian Sediments from the Ossa-Morena zone (Portugal). In: Mirão J, Balbino A (ed), VII Congresso Nacional de Geologia abstract book, vol. I. Estremoz, pp 213–215Google Scholar
  66. Pereira MF, Chichorro M, Williams IS, Silva JB, Fernández C, Díaz-Azpíroz M, Apraiz A, Castro A (2009) Variscan intra-orogenic extensional tectonics in the Ossa-Morena zone (Évora–Aracena–Lora del Río metamorphic belt, SW Iberian Massif): SHRIMP zircon U–Th–Pb geochronology. Geol Soc Spec Publ 327:215–237. CrossRefGoogle Scholar
  67. Pereira MF, Solá AR, Chichorro M, Lopes L, Gerdes A, Silva JB (2012) North-Gondwana assembly, break up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22(3–4):866–881. CrossRefGoogle Scholar
  68. Piçarra JM (2000) Estudo estratigráfico do sector de Estremoz-Barrancos, Zona de Ossa Morena, Portugal. Vol. I—Litoestratigrafia do intervalo Câmbrico médio?-Devónico inferior, vol. II—Bioestratigrafia do intervalo Ordovícico-Devónico inferior. Ph.D. Thesis (unpublished), Évora University, PortugalGoogle Scholar
  69. Piçarra JM, Le Meen J (1994) Ocorrência de crinóides em mármores do Complexo Vulcano-Sedimentar Carbonatado de Estremoz: implicações estratigráficas. Comun do Inst Geol e Mineiro 80:15–25Google Scholar
  70. Piçarra JM, Sarmiento G (2006) Problemas de posicionamento estratigráfico dos Calcários Paleozóicos da Zona de Ossa Morena (Portugal). In: Mirão J, Balbino A (eds) VII Congresso Nacional de Geologia abstract book, vol II. Estremoz, pp 657–660Google Scholar
  71. Piçarra JM, Sarmiento GN, Gutiérrez-Marco JC (2014) Geochronological vs Paleontological dating of the Estremoz Marbles (OMZ)—new data and reappraisal. Gondwana 15 conference abstract book. MadridGoogle Scholar
  72. Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133. CrossRefGoogle Scholar
  73. Ribeiro ML, Mata J, Piçarra JM (1992) Vulcanismo bimodal da região de Ficalho: características geoquímicas. Comun Serv Geol de Port 78(2):75–85Google Scholar
  74. Robardet M, Gutiérrez-Marco JC (1990) Passive margin phase (Ordovician-Silurian-Devonian). In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 249–251Google Scholar
  75. Robardet M, Gutiérrez-Marco JC (2004) The Ordovician, Silurian and Devonian sedimentary rocks of the Ossa-Morena zone (SW Iberian Peninsula, Spain). J Iber Geol 30:73–92Google Scholar
  76. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Addison-Wesley Longman Ltd, SingaporeGoogle Scholar
  77. Sánchez-García T, Quesada C, Bellido F, Dunning GR, González de Tánago J (2008) Two-step magma flooding of the upper crust during rifting: the Early Palaeozoic of the Ossa Morena zone (SW Iberia). Tectonophysics 461:72–90. CrossRefGoogle Scholar
  78. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407. CrossRefGoogle Scholar
  79. Santos JF, Andrade A, Munhá J (1990) Magmatismo orogénico varisco no limite meridional da Zona de Ossa-Morena. Comun Serv Geol Port 76:91–124Google Scholar
  80. Santos JF, Mata J, Ribeiro S, Fernandes J, Silva J (2013) Sr and Nd isotope data for arc-related (meta) volcanics (SW Iberia), Goldschmidt Conference Abstracts, 2132.
  81. Sarmiento GN, Piçarra JM, Oliveira JT (2000) Conodontes do silúrico (superior?)-devónico nos “mármores de estremoz”, sector de estremoz-barrancos (zona de ossa morena, portugal). Implicações estratigráficas e estruturais a nível regional. I congresso Ibérico de paleontologia/VIII International meeting of IGCP 421 (abstract book), Évora, pp 284–285Google Scholar
  82. Sarmiento GN, Gutiérrez-Marco JC, Del Moral B (2008) Conodontos de la “Caliza de Pelmatozoos” (Ordovícico Superior), Norte de Sevilla, Zona de Ossa-Morena (España). Coloquios de Paleontol 58:73–99Google Scholar
  83. Sarmiento GN, Gutiérrez-Marco JC, Rodríguez-Cañero R, Martín Algarra A, Navas-Parejo P (2011) A brief summary of Ordovician Conodont Faunas from the Iberian Peninsula. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero IGME, vol 14, pp 505–514Google Scholar
  84. Silva JC, Mata J, Moreira N, Fonseca PE, Jorge RCGS, Machado G (2011) Evidence for a lower devonian subduction zone in the south eastern boundary of the ossa-morena-zone. VIII congresso Ibérico de geoquímica (absctract book), Castelo Branco, Portugal, pp 295–299Google Scholar
  85. Taelman D, Elburg M, Smet I, Paepe P, Lopes L, Vanhaecke F, Vermeulen F (2013) Roman marble from Lusitania: petrographic and geochemical characterization. J Archaeol Sci 40:2227–2236. CrossRefGoogle Scholar
  86. Vegas R, Moreno R (1973) Sobre la tectónica del flanco meridional de la Antiforma de Burgillos (sur de la provincia de Badajoz). Estud Geol 29:513–517Google Scholar
  87. Veizer J (1989) Strontium Isotopes in Seawater through Time. Ann Rev Earth Planet Sci 17:141–167. CrossRefGoogle Scholar
  88. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. CrossRefGoogle Scholar
  89. Vera JA (ed) (2004) Geología de España. SGE-IGME, Madrid, p 884Google Scholar
  90. Winter JD (2013) Principles of igneous and metamorphic petrology. 2nd edn. Pearson New International Edition, Upper Saddle RiverGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Earth Sciences InstitutePole of the University of ÉvoraÉvoraPortugal
  2. 2.Departamento de Geociências da ECTUEColégio Luís António VerneyÉvoraPortugal
  3. 3.GeoBioTtec, Departamento de Geociências and Laboratório de Geologia IsotópicaUniversidade de AveiroAveiroPortugal
  4. 4.Laboratório Nacional de Energia e GeologiaUGCGAlfragidePortugal
  5. 5.Laboratório HERCULESInstituto de Investigação e Formação AvançadaÉvoraPortugal

Personalised recommendations