International Journal of Earth Sciences

, Volume 108, Issue 1, pp 267–285 | Cite as

Palaeo- and rock magnetic investigations of Late Quaternary sediments from the Upper Congo deep-sea fan: on the difficulty in obtaining palaeomagnetic secular variation records from low latitudes

  • Ute Frank
  • Norbert R. Nowaczyk
  • Thomas Frederichs
  • Jiabo Liu
  • Monika KorteEmail author
Original Paper


We report here on results of palaeo- and rock magnetic investigations of two sediment cores from the Upper Congo deep-sea fan. The sediments have a high organic content and contain a heterogeneous Fe-mineral assemblage with biogenic magnetite and detrital (Ti-)magnetite as the main magnetic carrier minerals. Pyrite, hematite, and Fe-oxyhydroxides were identified by comparing high-temperature magnetic susceptibility curves with those from Fe-minerals of known composition. According to AMS 14C dates, the 6.8 m-long profile spans the last 37 kyr. Sediments older than 20 ka are affected by reductive diagenesis that has led to a loss of the fine-grained magnetic mineral fraction. Sediments younger than 20 ka have stable magnetizations. Characteristic remanent magnetization records of inclination and declination were obtained for each core. There is a little agreement between these records, modelled curves, and other sediment records from Equatorial Africa, so no composite record could be established. The cores are not ideal relative palaeointensity recorders and estimates using different normalizers did not yield consistent signals from both cores. Normalization methods used for relative palaeointensity estimation were not developed for sediments that contain large amounts of ultra-fine-grained biogenic magnetite; therefore, the relative palaeointensity estimates should be considered with caution. However, in view of the incoherent picture given by the scarce available palaeointensity information from the region off South-West Africa, the GeoB6517-2 record may provide a tentative relative palaeointensity record for comparison, at least for the past 10 kyr.


Magnetic mineralogy Palaeomagnetic secular variation Palaeointensity Late quaternary Upper Congo deep-sea fan 



We thank V. Bender and W. Hale for providing access to the GeoB and IODP core repositories, respectively, at MARUM, Bremen, and T. Shanahan for providing the depth-age model for core P12 from Lake Bosumtwi, Ghana, and J. Pätzold for providing access to unpublished data sets for cores GeoB6517-2 and GeoB6518-1. We thank Andrew Roberts and an anonymous reviewer for constructive comments that improved the manuscript. This study was funded by the German Research Foundation (DFG), grants KO2870/4 − 1 and NO3334/8 − 1 to MK and NRN, within the scope of the priority program (SPP) 1488 “Planetary Magnetism”. JL holds a scholarship from the China Scholarship Council.

Supplementary material

531_2018_1653_MOESM1_ESM.pdf (515 kb)
Supplementary material 1 (PDF 515 KB)


  1. Barletta F, St-Onge G, Channell JET, Rochon A (2010) Dating of Holocene western Canadian Arctic sediments by matching paleomagnetic secular variation to a geomagnetic field model. Quat Sci Rev 29:2315–2324CrossRefGoogle Scholar
  2. Bloemendal J, Lamb B, King J (1988) Paleoenvironmental implications of rock-magnetic properties of Late Quaternary sediment cores from the eastern Equatorial Atlantic. Paleoceanography 3:61–87CrossRefGoogle Scholar
  3. Blum P (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. ODP Tech Note 26,
  4. Bourne MD, Feinberg JF, Stafford TW Jr, Waters MR Jr, Lundellius E Jr, Forman SL (2016) High-intensity geomagnetic field ‘spike’ observed at ca. 3000 cal BP in Texas, USA. Earth Planet Sci Lett 442:80–92CrossRefGoogle Scholar
  5. Channell JET, Stoner JS, Hodell DA, Charles CD (2000) Geomagnetic paleointensity for the last 100 kyr from the sub-Antarctic South Atlantic: a tool for inter-hemisphere correlation. Earth Planet Sci Lett 175:145–160CrossRefGoogle Scholar
  6. Chen L, Heslop D, Roberts AP, Chang L, Zhao X, McGregor HV, Marino G, Rodriguez-Sanz L, Rohling EJ, Pälike H (2017) Remanence acquisition efficiency in biogenic and detrital magnetite and recording of geomagnetic paleointensity. Geochem Geophys Geosys 18:1435–1450CrossRefGoogle Scholar
  7. Collins JA, Schefuß E, Heslop D, Mulitza S, Prange M, Zabel M, Tjallingii R, Dokken TM, Huang E, Mackensen A, Schulz M, Tian J, Zarriess M, Wefer G (2010) Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat Geosci 4:42–45CrossRefGoogle Scholar
  8. Constable C, Korte M, Panovska S (2016) Persistent high paleosecular variation activity in southern hemisphere for at least 10,000 years. Earth Planet Sci Lett 453:78–86CrossRefGoogle Scholar
  9. Dekkers MJ (1989) Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of J rs and TRM as function of grain size. Phys Earth Planet Inter 57:266–283CrossRefGoogle Scholar
  10. Dillon M, Bleil U (2006) Rock magnetic signatures in diagenetically altered sediments from the Niger deep-sea fan. J Geophys Res 111:B03105. CrossRefGoogle Scholar
  11. Dupont LM (2008) The Congo deep-sea fan as an archive of quaternary change in Africa and the eastern Tropical South Atlantic (a review). Extern Controls Deep-Water Depos Syst 92:79–87Google Scholar
  12. Egli R (2004) Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud Geophys Geod 48:391–446CrossRefGoogle Scholar
  13. Egli R (2013) VARIFORC: an optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams. Glob Planet Change 110:302–320CrossRefGoogle Scholar
  14. Egli R, Chen AP, Winklhofer M, Kodama KP, Horng CS (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosys 11:Q01Z11. CrossRefGoogle Scholar
  15. Eisma D, Kalf J, Van der Gaast SJ (1978) Suspended matter in the Zaire estuary and the adjacent Atlantic Ocean. Neth J Sea Res 12:382–406CrossRefGoogle Scholar
  16. Ellwood BB, Brett CE, MacDonald WD (2007) Magnetostratigraphy susceptibility of the Upper Ordovician Kope Formation, northern Kentucky. Palaeogeogr Palaeoclimate Palaeoecol 243:42–54CrossRefGoogle Scholar
  17. Frank U, Nowaczyk NR (2008) Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophys J Int 175:449–461CrossRefGoogle Scholar
  18. Frank U, Nowaczyk NR, Negendank JFW, Melles M (2002a) A paleomagnetic record from Lama Lake, northern Central Siberia. Phys Earth Planet Inter 133:3–20CrossRefGoogle Scholar
  19. Frank U, Nowaczyk NR, Negendank JFW (2007b) Rock magnetism of greigite bearing sediments from the Dead Sea, Israel. Geophys J Int 168:921–934CrossRefGoogle Scholar
  20. Frank U, Nowaczyk NR, Frederichs T, Korte M (2017) Palaeo- and rock magnetic investigations on Late Quaternary sediments from low latitudes I: geomagnetic palaeosecular variation and relative paleointensity records from the Tobago Basin, Southeast Caribbean. Geophys J Int 208:1740–1755Google Scholar
  21. Gallet Y, Molist Montaña M, Genevey A, Clop García X, Thébault E, Gómez Bach A, Le Goff M, Robert B, Nachasova I (2015) New Late Neolithic (c. 7000–5000 BC) archeointensity data from Syria. Reconstructing 9000 years of archeomagnetic field intensity variations in the Middle East. Phys Earth Planet Inter 238:89–103CrossRefGoogle Scholar
  22. Hanesch M, Stanjek H, Petersen N (2006) Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophys J Int 165:53–61CrossRefGoogle Scholar
  23. Harrison RJ, Feinberg JM (2008) FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosys 9:Q05016. CrossRefGoogle Scholar
  24. Heezen BC, Menzies RJ, Schneider DE, Ewing WM, Granelli NCL (1964) Congo submarine canyon. AAPG Bull 48:1126–1149Google Scholar
  25. Heslop D, Dekkers MJ, Kruiver PP, Van Oorschot IHM (2002) Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys J Int 148:58–64CrossRefGoogle Scholar
  26. Hilgenfeldt K (2000) Diagenetic dissolution of biogenic magnetite in surface sediments of the Beguela upwelling system. Int J Earth Sci 88:630–640CrossRefGoogle Scholar
  27. Hirt AM, Banin A, Gehring AU (1993) Thermal generation of ferromagnetic minerals from iron-enriched smectites. Geophys J Int 115:1161–1168CrossRefGoogle Scholar
  28. Itambi AC, Von Dobeneck T, Mulitza S, Bickert T, Heslop D (2009) Millenial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: evidence in marine sediments from offshore Senegal. Paleoceanography 24:PA1205. CrossRefGoogle Scholar
  29. Itambi AC, Von Dobeneck T, Adegbie AT (2010) Millennial-scale precipitation changes over Central Africa during the Late Quaternary and Holocene: evidence in sediments from the Gulf of Guinea. J Quat Sci 25:267–279CrossRefGoogle Scholar
  30. King JW, Banerjee SK, Marvin J (1983) A new rock-magnetic approach to selecting sediments for geomagnetic palaeointensity studies: application to palaeointensity for the last 4000 years. J Geophys Res 88:5911–5921CrossRefGoogle Scholar
  31. Kirschvink JL (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62(3):699–718CrossRefGoogle Scholar
  32. Kissel C, Rodriguez-Gonzales A, Laj C, Perez-Torrado F, Carracedo JC, Wandres C, Guillou H (2015) Paleosecular variation of the Earth magnetic field at the Canary Islands over the last 15 ka. Earth Planet Sci Lett 412:52–60CrossRefGoogle Scholar
  33. Lebamba J, Vincens A, Maley J (2012) Pollen, vegetation change and climate at Lake Barombi Mbo (Cameroon) during the last ca. 33 000 cal yr. BP: a numerical approach. Clim Past 8:59–78CrossRefGoogle Scholar
  34. Lund S, Platzmann E, Johnson T (2016) Full-vector paleomagnetic secular variation records from latest Quaternary sediment of lake Malawi (10.0°S, 34.3°E). Quat Sci Rev 144:16–27CrossRefGoogle Scholar
  35. Marret F, Scourse J, Kennedy H, Ufkes E, Jansen JHF (2008) Marine production in the Congo-influenced SE Atlantic over the past 30,000 years: a novel dinoflagellate-cyst based transfer function approach. Mar Micropal 68:198–222CrossRefGoogle Scholar
  36. Minyuk PS, Subotnikova TV, Plyaskevich AA (2011) Measurements of thermal magnetic susceptibility of hematite and goethite. Iz Phys Solid Earth 47:762–774CrossRefGoogle Scholar
  37. Müller PJ (2003a) Density and water content of sediment core GeoB6517-2, PANGAEA,
  38. Müller PJ (2003b) Density and water content of sediment core GeoB6518-1, PANGAEA,
  39. Müller PJ (2004a) Carbon and nitrogen data of sediment core GeoB6517-2, PANGAEA, Unpublished dataset #133976Google Scholar
  40. Müller PJ (2004b) Carbon and nitrogen data of sediment core GeoB6518-1, PANGAEA, Unpublished dataset #135708Google Scholar
  41. Nilsson A, Holme R, Korte M, Suttie N, Hill M (2014) Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys J Int 198:229–248CrossRefGoogle Scholar
  42. Nowaczyk NR (2011) Dissolution of titanomagnetites and sulphidization in sediments from Lake Kinneret, Israel. Geophys J Int 187:34–44, CrossRefGoogle Scholar
  43. Nowaczyk NR, Arz HW, Frank U, Kind J, Plessen B (2012) Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth Planet Sci Lett 351–352:54–69CrossRefGoogle Scholar
  44. Nowaczyk NR, Frank U, Kind J, Arz HW (2013) A high-resolution paleointensity stack from 14 to 68 ka from Black Sea sediments. Earth Planet Sci Lett 384:1–16CrossRefGoogle Scholar
  45. Ouyang T, Heslop D, Roberts AP, Tian C, Zhu Z, Qiu Y, Peng X (2014) Variable remanence acquisition efficiency in sediments containing biogenic and detrital magnetites: implications for relative paleointentsity signal recording. Geochem Geophys Geosys 15:2780–2796CrossRefGoogle Scholar
  46. Passier HF, de Lange GJ, Dekkers MJ (2001) Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea. Geophys J Int 145:604–614CrossRefGoogle Scholar
  47. Paterson GA, Wang Y, Pan Y (2013) The fidelity of paleomagnetic records carried by magnetosome chains. Earth Planet Sci Lett 383:82–91CrossRefGoogle Scholar
  48. Peck JA, Green RR, Shanahan T, King JW, Overpeck JT, Scholz CA (2004) A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclim Palaeoecol 215:37–57CrossRefGoogle Scholar
  49. Petermann H, Bleil U (1993) Detection of live magnetotactic bacteria in South Atlantic deep-sea sediment. Earth Planet Sci Lett 117:223–228CrossRefGoogle Scholar
  50. Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res 105:28461–28475CrossRefGoogle Scholar
  51. Roberts AP, Chang L, Heslop D, Florindo F, Larrasoaña JC (2012) Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. J Geophys Res 117:B08104. Google Scholar
  52. Roberts AP, Almeida TP, Church NS, Harrison RJ, Heslop D, Li Y, Li J, Muxworthy AR, Williams W, Zhao X (2017) Resolving the origin of pseudo-single domain magnetic behaviour. J Geophys Res 122:9534–9558CrossRefGoogle Scholar
  53. Rochette P, Fillion G (1989) Field and temperature behaviour of remanence in synthetic goethite: paleomagnetic implications. Geophys Res Lett 16:851–854CrossRefGoogle Scholar
  54. Rochette P, Mathé PE, Esteban L, Rakoto H, Bouchez J-L, Liu Q, Torrent J (2005) Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas. Geophys Res Lett 32:L22309. CrossRefGoogle Scholar
  55. Rowan CR, Roberts AP, Broadbent T (2009) Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view. Earth Planet Sci Lett 277:223–235CrossRefGoogle Scholar
  56. Schefuß E, Schouten S, Schneider RR (2005) Climatic controls on central African hydrology during the past 20,000 years. Nature 437:1003–1006CrossRefGoogle Scholar
  57. Schefuß E, Eglinton TJ, Spencer-Jones CL, Rullkötter J, De Pol-Holz R, Talbot HM, Grootes PM, Schneider RR (2016) Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat Geosci 9:687–690CrossRefGoogle Scholar
  58. Schwartz M, Lund SP, Hammond DE, Schwartz R, Wong K (1997) Early sediment diagenesis on the Blake/Bahama Outer Ridge, North Atlantic Ocean and its effects on sediment magnetism. J Geophys Res 102:7903–7914CrossRefGoogle Scholar
  59. Shanahan TM, Beck JW, Overpeck JT, McKay NP, Pigati JS, Peck JA, Scholz CA, Heil Jr CW, King J (2012) Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling. Palaeogeogr Palaeoclim Palaeoecol 316:49–60Google Scholar
  60. Spieß V, Cruise P (2002) METEOR Cruise No. 47. Leg 3, 1 June–3 July 2000. Libreville—Walvis Bay, Institut für Meereskunde der Universität, HamburgGoogle Scholar
  61. Stoner JS, Laj C, Channell JET, Kissel C (2002) South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Quat Sci Rev 21:1141–1151CrossRefGoogle Scholar
  62. Stoner JS, Channell JET, Hodell DA, Charles CD (2003) A ~ 580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program site 1089). J Geophys Res 108:2244CrossRefGoogle Scholar
  63. Tauxe L (1993) Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev Geophys 31:319–354CrossRefGoogle Scholar
  64. Thouveny N, Williamson D (1988) Palaeomagnetic study of the Holocene and Upper Pleistocene sediments from Lake Barombi Mbo, Cameroun: first results. Phys Earth Planet Inter 52:193–206CrossRefGoogle Scholar
  65. Van Vreumingen MJ (1984) A palaeomagnetic and rockmagnetic study of sediment cores from the Zaire Submarine Fan. Neth J Sea Res 17:342–363CrossRefGoogle Scholar
  66. Walker B (2001) High-resolution paleomagnetic analysis of a sediment core from Lake Bosumtwi, Ghana. in GSO Technical Report No. 2001-2, University of Rhode Island, Rhode Island, 46–56Google Scholar
  67. Wefer G, Shipboard Scientific Party (1998a) Leg 175 Introduction. In Proc. ODP Init. Repts., 175, eds. Wefer, G, Berger, WH, Richter, C et al., Ocean Drilling Program, College Station, TX, 7–25Google Scholar
  68. Wefer G, Berger WH, Richter C, Shipboard Scientific Party (1998a) Facies pattern and authigenic minerals of upwelling deposits off southwest Africa. In: Proc. ODP Init. Repts., 175, Wefer G, Berger WH, Richter C (eds) Ocean drilling program, College Station, TX, 487–504Google Scholar
  69. Wefer G, Shipboard Scientific Party (1998b) Site 1076. In: Proc. ODP Init. Repts., 175, Wefer G, Berger WH, Richter C (eds) Ocean drilling program, College Station, TX, 87–113Google Scholar
  70. Weijers JWH, Schouten S, Schefuß E, Schneider RR, Damstè JSS (2009) Disentangeling marine, soil and plant organic carbon contributions to continental margin sediments: a multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochim Cosmochim Acta 73:119–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Faculty of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations