Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 1, pp 229–244 | Cite as

Biomarker paleo-reconstruction of the German Wealden (Berriasian, Early Cretaceous) in the Lower Saxony Basin (LSB)

  • Martin BlumenbergEmail author
  • Klaus G. Zink
  • Georg Scheeder
  • Christian Ostertag-Henning
  • Jochen Erbacher
Original Paper
  • 66 Downloads

Abstract

During the Early Cretaceous (Berriasian; Wealden 3–4), Northwestern Germany was covered by an east–west elongated tentatively brackish lake in which locally more than 700 m-thick black shales were deposited. While the distribution of organofacies’ in the basin is relatively well documented, the paleoenvironmental conditions in the basin center (e.g., occurrence and spread of water column stratification) and the spatial record of biomarkers in Wealden 3–4 shales (and coals) are rarely known. We here present respective data from the entire basin. In large areas, total organic carbon (TOC) contents are above 5 wt% and HI values above 700 mg hydrocarbons (HC)/g TOC, supporting the high potential of shales in the central basin as petroleum source rocks. Furthermore, bulk geochemical data as well as biomarkers clearly mirror the Wealden 3–4 facies distribution with the differentiation of a predominantly terrestrial setting east of the Weser River and an aquatic and brackish lake setting in the west. Certain biomarkers such as isorenieratane, specific for green sulfur bacteria, indicate that the basin consisted of a permanently stratified water column with a brackish/marine deep water body and an oxic–anoxic transition zone in the photic zone. In the southwestern gate of the lake (including the Isterberg area) and towards the east, no water column stratification developed. Characteristic of Wealden 3–4 black shale organic matter are: high relative abundances of saturated versus aromatic hydrocarbons (most likely due to high Botryococcus algal input), highly negative δ13C values in the extract fractions, low isotopic “canonical variables” (sensu Sofer in AAPG Bull 68:31–49, 1984), and high gammacerane, dinosterane, and C35-homohopane relative abundances. Interpreting those data, the different sub-facies of the environmental setting can be excellently documented. Particularly, in the western part of the basin, Wealden 3–4 shales are important petroleum source rocks. However, an overlap of biomarker signatures with those from Jurassic Posidonienschiefer Formation (“Posidonia”) shales from the same area shows that oil–source rock correlations in this area remain challenging.

Keywords

Biomarkers Berriasian German Wealden Basin “Posidonia” shale Isorenieratane Gammacerane Lower Saxony Basin (LSB) 

Notes

Acknowledgements

We thank two anonymous reviewers for their constructive comments, which significantly improve the manuscript. Ulrich Berner, Eva Stiller, Carsten Helm, and Ulf Rogalla are thanked for collaborations and data compilation in the frame of the NIKO project. Stefan Ladage is acknowledged for valuable discussions and Monika Weiß, Sylvia Kramer, Petra Adam, Sabrina Koopmann, Ina Sosnitza, and Annegret Tietjen are thanked for laboratory assistance. We thank EMPG, Neptune Energy and Wintershall for the permission to use samples and publish results.

References

  1. Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von NW-Deutschland und des deutschen Nordsee-Sektors—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrb A 153:1–40Google Scholar
  2. Bartenstein H, Teichmüller M, Teichmüller R (1971) Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschr Geol Rheinl Westf 18:501–538Google Scholar
  3. Berkaloff C, Casadevall E, Largeau C, Metzger P, Peracca S, Viret J (1983) The resistant walls of the hydrocarbon-rich alga Botryococcus braunii. Phytochemistry 22:389–397CrossRefGoogle Scholar
  4. Berndmeyer C, Thiel V, Schmale O, Wasmund N, Blumenberg M (2014) Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea). Biogeoscience 11:7009–7023.  https://doi.org/10.5194/bg-11-7009-2014 CrossRefGoogle Scholar
  5. Berner U (2011) The German Wealden, an unconventional hydrocarbon play? Erdöl Kohle Gas 127:303–307Google Scholar
  6. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368CrossRefGoogle Scholar
  7. Berner U, Kahl T, Scheeder G (2010) Hydrocarbon potential of sediments of the German Wealden Basin. Erdöl Kohle Gas 2:80–84Google Scholar
  8. BGR (2016) Schieferöl und Schiefergas in Deutschland—Potenziale und Umweltaspekte. Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  9. Binot F, Gerling P, Hiltmann W, Kockel F, Wehner H (1993) The petroleum system in the Lower Saxony Basin. In: Spencer AM (ed) Generation, accumulation, and production of Europe’s hydrocarbons. Springer, Berlin, pp 121–139CrossRefGoogle Scholar
  10. Blumenberg M, Heunisch C, Lückge A, Scheeder G, Wiese F (2016) Photic zone euxinia in the central Rhaetian Sea prior the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 461:55–64.  https://doi.org/10.1016/j.palaeo.2016.08.007 CrossRefGoogle Scholar
  11. Boon JJ, Rijpstra IC, DeLange F, De Leeuw JW (1979) Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277:125–217CrossRefGoogle Scholar
  12. Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359CrossRefGoogle Scholar
  13. Brassell SC, Eglinton G, Maxwell JR (1983) The geochemistry of terpenoids and steroids. Biochem Soc Trans 11:575–586CrossRefGoogle Scholar
  14. Brock TD, Madigan MT (1991) Biology of microorganisms, 6th edn. Prentice Hall, Englewood CliffsGoogle Scholar
  15. Brooks PW, Maxwell JR (1974) Early stage fate of phytol in a recently-deposited lacustrine sediment. Adv Org Geochem Proc Int Meet 6th 1973:977–991Google Scholar
  16. Bruns B, Littke R, Gasparik M, van Wees JD, Nelskamp S (2016) Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands: a 3D basin modelling study. Basin Res 28:2–33.  https://doi.org/10.1111/bre.12096 CrossRefGoogle Scholar
  17. Chalansonnet S, Largeau C, Casadevall E, Berkaloff C, Peniguel G, Couderc R (1988) Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material. Org Geochem 13:1003–1010CrossRefGoogle Scholar
  18. Collister JW, Wavrek DA (1996) δ13C compositions of saturate and aromatic fractions of lacustrine oils and bitumens: evidence for water column stratification. Org Geochem 24:913–920.  https://doi.org/10.1016/S0146-6380(96)00066-6 CrossRefGoogle Scholar
  19. Collister JW, Summons RE, Lichtfouse E, Hayes JM (1992) An isotopic biogeochemical study of the Green River oil shale. Org Geochem 19:265–276.  https://doi.org/10.1016/0146-6380(92)90042-V CrossRefGoogle Scholar
  20. Dahl J, Michael Moldowan J, Sundararaman P, Montana (1993) Relationship of biomarker distribution to depositional environment: phosphoria formation. USA Org Geochem 20:1001–1017.  https://doi.org/10.1016/0146-6380(93)90109-O CrossRefGoogle Scholar
  21. Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222CrossRefGoogle Scholar
  22. Eglinton TI, Douglas AG (1988) Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy Fuels 2:81–88CrossRefGoogle Scholar
  23. Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic, New York, pp 187–217Google Scholar
  24. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
  25. Elstner F, Mutterlose J (1996) The Lower Cretaceous (Berriasian and Valanginian) in NW Germany. Cretac Res 17:119–133CrossRefGoogle Scholar
  26. Erbacher J, Hiss M, Luppold FW, Mutterlose J (2014) Bückeburg-Gruppe (in German) BGR. https://litholex.bgr.de
  27. Espitalié J (1986) Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: Burrus J (ed) Thermal modeling in sedimentary basins. IFP research conferences on exploration. Editions Technip, Paris, pp 475–496Google Scholar
  28. Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Oil Gas Sci Technol Rev IFP 32:23–42Google Scholar
  29. French KL, Rocher D, Zumberge JE, Summons RE (2015) Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13:139–151.  https://doi.org/10.1111/gbi.12126 CrossRefGoogle Scholar
  30. Grice K, Schaeffer P, Schwark L, Maxwell JR (1996) Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids. Org Geochem 25:131–147CrossRefGoogle Scholar
  31. Jeremiah JM, Duxbury S, Rawson P (2010) Lower Cretaceous of the southern North Sea Basins: reservoir distribution within a sequence stratigraphic framework. Neth J Geosci Geologie en Mijnbouw 89:203–237.  https://doi.org/10.1017/S0016774600000706 Google Scholar
  32. Killops S, Killops V (2005) Introduction to organic geochemistry, 2nd edn. Blackwell, OxfordGoogle Scholar
  33. Kockel F, Wehner H, Gerling P (1994) Petroleum systems of the Lower Saxony Basin, Germany. AAPG Memoir 60:573–586Google Scholar
  34. Kohnen MEL, Schouten S, Sinninghe Damsté JS, De Leeuw JW, Merritt DA, Hayes JM (1992) Recognition of paleobiochemicals by a combined molecular sulfur and isotope geochemical approach. Science 256:358–362CrossRefGoogle Scholar
  35. Koopmans MP et al (1996) Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochim Cosmochim Acta 60:4467–4496CrossRefGoogle Scholar
  36. Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut français du pétrole 53:421–437CrossRefGoogle Scholar
  37. Largeau C, Casadevall E, Kadouri A, Metzger P (1984) Formation of Botryococcus-derived kerogens—Comparative study of immature torbanites and of the extent alga Botryococcus braunii. Org Geochem 6:327–332CrossRefGoogle Scholar
  38. Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of Steroids. Science 217:491–504CrossRefGoogle Scholar
  39. Mello MR, Gaglianone PC, Brassell SC, Maxwell JR (1988) Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Mar Petrol Geol 5:205–223.  https://doi.org/10.1016/0264-8172(88)90002-5 CrossRefGoogle Scholar
  40. Mißbach H, Duda JP, Lünsdorf NK, Schmidt BC, Thiel V (2016) Testing the preservation of biomarkers during experimental maturation of an immature kerogen. Int J Astrobiol 15:165–175CrossRefGoogle Scholar
  41. Moldowan JM, Seifert WK (1980) First discovery of Botryococcane in petroleum. J Chem Soc Chem Comm 568:912–914CrossRefGoogle Scholar
  42. Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771.  https://doi.org/10.1126/science.265.5173.768 CrossRefGoogle Scholar
  43. Mutterlose J, Bornemann A (2000) Distribution and facies patterns of Lower Cretaceous sediments in northern Germany: a review. Cretac Res 21:733–759.  https://doi.org/10.1006/cres.2000.0232 CrossRefGoogle Scholar
  44. Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem 17:47–61CrossRefGoogle Scholar
  45. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide volume 2: biomarkers and isotopes in petroleum exploration and earth history, vol 2. The Press Syndicate of the University of Cambridge, CambridgeGoogle Scholar
  46. Reinhardt M, Duda JP, Blumenberg M, Ostertag-Henning C, Reitner J, Thiel V (2018) The taphonomic fate of isorenieratene derivatives in Lower Jurassic oil shales—controlled by iron? Geobiology 16:237–251CrossRefGoogle Scholar
  47. Requejo AG (1994) Maturation of petroleum source rocks—II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org Geochem 21:91–105.  https://doi.org/10.1016/0146-6380(94)90089-2 CrossRefGoogle Scholar
  48. Riboulleau A, Schnyder J, Riquier L, Lefebvre V, Baudin F, Deconinck J-F (2007) Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): a biomarker approach. Org Geochem 38:1804–1823.  https://doi.org/10.1016/j.orggeochem.2007.07.006 CrossRefGoogle Scholar
  49. Rippen D, Littke R, Bruns B, Mahlstedt N (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org Geochem 63:18–36.  https://doi.org/10.1016/j.orggeochem.2013.07.013 CrossRefGoogle Scholar
  50. Schneider AC, Heimhofer U, Heunisch C, Mutterlose J (2018) The Jurassic–Cretaceous boundary interval in non-marine strata of northwest Europe—new light on an old problem. Cretac Res 87:42–54.  https://doi.org/10.1016/j.cretres.2017.06.002 CrossRefGoogle Scholar
  51. Schott W, Jaritz W, Kockel F, Sames CW, von Stackelberg U, Stets J, Stoppel D (1969) Paläogeographischer Atlas der Unterkreide von Nordwestdeutschland mit einer Übersichtsdarstellung des nördlichen Mitteleuropas und Erläuterungen. Bundesanstalt für Bodenforschung, HannoverGoogle Scholar
  52. Schwark L, Frimmel A (2004) Chemostratigraphy of the Posidonia Black Shale, SW-Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. Chem Geol 206:231–248CrossRefGoogle Scholar
  53. Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S, Hayes JM, de Leeuw J (1995) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59:1895–1900CrossRefGoogle Scholar
  54. Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68:31–49Google Scholar
  55. Strauss C, Elstner F, Du Chene RJ, Mutterlose J, Reiser H, Brandt KH (1993) New micropaleontological and palynological evidence on the stratigraphic position of the,German Wealden* in NW-Germany. Zitteliana 20:389–401Google Scholar
  56. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557CrossRefGoogle Scholar
  57. Ten Haven HL, Rohmer M, Rullkoetter J, Bisseret P (1989) Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim Cosmochim Acta 53:3073–3079CrossRefGoogle Scholar
  58. van Krevelen DW (1993) Coal—typology, physics, chemistry, constituents, 3rd edn. Elsevier, OxfordGoogle Scholar
  59. Volkman JK (2014) Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Org Geochem 75:36–47.  https://doi.org/10.1016/j.orggeochem.2014.06.005 CrossRefGoogle Scholar
  60. Wakeham SG et al (2007) Microbial eoclogy of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38:2070–2097CrossRefGoogle Scholar
  61. Wehner H, Binot F, Delisle G, Gerling JP, Hiltmann W, Kockel F (1988) Genese und Migration von Erdlöen im Niedersächsischen Becken: Entwicklung einer integrierten geoligsch-geochemischen Explorationsmethode auf Kohlenwasserstoffe; Abschlussbericht für das östliche Becken. Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  62. Wehner H, Binot F, Gerling JP, Hiltmann W, Kockel F (1989) Genese und Migration von Erdlölen im Niedersächsischen Becken: Entwicklung einer integrierten geoligsch-geochemischen Explorationsmethoden auf Kohlenwasserstoffe; Abschlussbericht über das westliche Niedersächsische Becken (Raum westlich der Weser). BMFT Forschungsvorhaben, Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  63. Wiesner M (1983) Lithologische und geochemische Faziesuntersuchugen an biumniösen Sedimenten des Berrrias im Raum Bentheim-Salzbergen (Emsland). PhD Thesis, University of HamburgGoogle Scholar
  64. Withers N (1983) Dinoflagellates sterols. In: Scheuer PJ (ed) Marine natural products. chemical and biological perspectives, vol 5. Academic, New York, pp 87–130Google Scholar
  65. Wolburg J (1959) Die Cyprideen des NW-deutschen Wealden (in German). Senckenbergiana Lethea 40:223–315Google Scholar
  66. Wolff GA, Lamb NA, Maxwell JR (1986) The origin and fate of 4-methyl steroids—II. Dehydration of stanols and occurrence of C30 4-methyl steranes. Org Geochem 10:965–974CrossRefGoogle Scholar
  67. Ziegs V, Mahlstedt N, Bruns B, Horsfield B (2014) Predicted bulk composition of petroleum generated by Lower Cretaceous Wealden black shales, Lower Saxony Basin, Germany. Int J Earth Sci 104:1605–1621.  https://doi.org/10.1007/s00531-014-1081-y CrossRefGoogle Scholar
  68. Zink KG, Scheeder G, Stueck HL, Biermann S, Blumenberg M (2016) Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany. Int J Coal Geol 163:186–194.  https://doi.org/10.1016/j.coal.2016.06.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin Blumenberg
    • 1
    Email author
  • Klaus G. Zink
    • 1
  • Georg Scheeder
    • 1
  • Christian Ostertag-Henning
    • 1
  • Jochen Erbacher
    • 1
  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany

Personalised recommendations