Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 1, pp 115–135 | Cite as

Clastic wedge provenance in the Zemplinicum Carboniferous–Permian rocks using the U–Pb zircon age dating (Western Carpathians, Slovakia)

  • Anna VozárováEmail author
  • Alexander Larionov
  • Katarína Šarinová
  • Nickolay Rodionov
  • Elena Lepekhina
  • Jozef Vozár
  • Ilya Paderin
Original Paper
  • 81 Downloads

Abstract

U–Pb (SHRIMP) detrital zircon ages from the Pennsylvanian–Permian meta-sedimentary rocks of the Zemplinicum Unit were used to characterise the provenance and the tectono-thermal evolution of the basement. The magmatic zircon ages from the contemporaneous rhyolite pyroclastics, ranging from 308 to 305 Ma, dated the Pennsylvanian sedimentary formations to the Moscovian and Kasimovian Ages. Two brakes in sedimentation within the Pennsylvanian–Permian sequence are presumed, first, flanked by Gzhelian–Asselian and second, intra-Permian. The detrital zircon age spectrum demonstrates two prominent populations: (i) Middle/Late Ordovician (age peak 459 Ma), (ii) Ediacaran–Cryogenian (age peaks 592 and 641 Ma). These, together with minor clusters from ~ 773 to 950 Ma, evidently document the Pan-African multiple magmatic events. The 1.1–1.8 Ga age gap and isolated zircons of Mesoproterozoic ages (1036–1361 Ma) are characteristic. Two populations, 1.8–2.2 Ga and 2.5–2.8 Ga, are presented within the Paleoproterozoic–Neoarchean zircons. The Zemplinicum Neoproterozoic arc crust had been affected by the extensional thermal relaxation and melting during Middle/Late Ordovician. The subsequent reworking had been connected with the Mississippian collision, followed by the Pennsylvanian/Permian extension. The presence of the Neoproterozoic detrital zircon ages including the Tonian ones permit to compare the Zemplinicum basement with the eastern peri-Gondwanan domain, which was situated at the northern margin of the Saharan Metacraton or the Arabian Nubian Shield during Neoproterozoic time.

Keywords

SHRIMP dating Zircon ages Provenance variations Tectonic implication 

Notes

Acknowledgements

The financial support of the Slovak Research and Development Agency (Project ID: APVV-0546-11) and VEGA (project VEGA 1/0141/15) is gratefully acknowledged. The authors would like to thank M. Kohút and an unknown reviewer for the constructive reviews which led to a significant improvement of this manuscript.

Supplementary material

531_2018_1645_MOESM1_ESM.pdf (61 kb)
Supplementary material 1 (PDF 60 KB)

References

  1. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270CrossRefGoogle Scholar
  2. Andrusov D (1968) Grundriss der Tektonik der Nördlichen Karpaten. Slovak Academy of Sciences Publ House, Bratislava, p 188Google Scholar
  3. Andrusov D, Bystrický J, Fusán O (1973) Outline of the structure of the West Carpathians: Guide book, Xth Congress CBGA. Dionýz Štúr Geological Institute, Bratislava, pp 1–44Google Scholar
  4. Balintoni I, Balica C, Ducea NM, Hann PH (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411CrossRefGoogle Scholar
  5. Baňacký V, Vass D, Elečko M, Kaličiak M, Lexa J, Straka P, Vozár J, Vozárová A (1986) Geological map from the southern part of East Slovakia Lowland and Zemplín Mts., 1:50,000. Dionýz Štúr Inst Geol, BratislavaGoogle Scholar
  6. Baňacký V, Elečko M, Kaličiak M, Straka P, Škvarka L, Šucha P, Vass D, Vozárová A, Vozár J (1989) Explanation to Geological map of the southern part of East Slovakia Lowland and Zemplín Mts., 1:50 000. Dionýz Štúr Inst Geol, Bratislava, p 143 (in Slovak, English summary, p 145) Google Scholar
  7. Be’eri-Shlevin Y, Avigad D, Gerdes A, Zlatkin O (2014) Detrital zircon U-Pb-Hf systematics of Israeli coastal sands: new perspectives on the provenance on Nile sediments. J Geol Soc 171:107–116CrossRefGoogle Scholar
  8. Bibikova EV, Cambel B, Korikovsky SP, Broska I, Gracheva TV, Makarov VA, Arakeliants MM (1988) U-Pb and K-Ar isotopic dating of Sinec (Rimavica) granites (Kohút zone of Veporides). Geol Zborn Geol Carpath 39:147–157Google Scholar
  9. Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996) Explanation to geological map of Slovakia, 1:500,000. Dionýz Štúr Publishers, Bratislava, p 76Google Scholar
  10. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol 200:155–170.  https://doi.org/10.1016/S0009-2541(03)00165-7 CrossRefGoogle Scholar
  11. Bouček B, Přibyl A (1959) Geological evolution of Zemplínske vrchy Hills in Eastern Slovakia. Geologické Práce Zošit 52:185–222 (in Czech) Google Scholar
  12. Broska I, Petrík I, Beʹeri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36CrossRefGoogle Scholar
  13. Dickinson WR, Gehrels GE (2008) U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J Sediment Res 78(12):745–764CrossRefGoogle Scholar
  14. Dickinson WR, Gehrels GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125.  https://doi.org/10.1016/j.epsl.2009.09.013 CrossRefGoogle Scholar
  15. Dörr W, Zulauf G, Gerdes A, Lahaye Y, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponesus). Precambrian Res 258:83–108.  https://doi.org/10.1016/j.precamres.2014.12.015 CrossRefGoogle Scholar
  16. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19(1):213–231CrossRefGoogle Scholar
  17. Ebner F, Rantitsch G, Russegger B, Vozárová A, Kovács S (2006) A three component (organic carbon, pyritic sulphur, carbonate content) model as a tool for lithostratigraphic correlation of Carboniferous sediments in the Alpine-Carpathian-North Pannonian realm. Geol Carpath 57(4):243–256Google Scholar
  18. Együd K (1982) Sedimentology of Upper Paleozoic strata in the Zemplínske vrchy Mts. Miner Slovaca 14(5):385–401 (in Slovak, English summary) Google Scholar
  19. Faryad SW (1995) Geothermometry of metamorphic rocks from the Zemplinicum (Western Carpathians, Slovakia). Geol Carpath 46:113–123Google Scholar
  20. Faryad SW, Balogh K (2002) Variscan pegmatite and K–Ar and Ar–Ar dating from basement rocks of the Zemplin Unit, Western Carpathians. Acta Geol Hung 45:193–205CrossRefGoogle Scholar
  21. Faryad SW, Vozárová A (1997) Geology and metamorphism of the Zemplinicum basement unit (Western Carpathians). In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov Monograph, Bratislava, pp 351–356Google Scholar
  22. Finger F, Faryad SW (1999) A Variscan monazite age from the Zemplín basement (eastern Western Carpathians). Acta Geol Hung 42:301–307Google Scholar
  23. Finger F, Broska I, Haunschmid B, Hraško L, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci (Geol Rundsch) 92:86–98.  https://doi.org/10.1007/s00531-002-0300-0 Google Scholar
  24. Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann (ed) The geology of central Europe Vol. 2: mesozoic and cenozoic, pp 1141–1232Google Scholar
  25. Fülöp J (1994) Geology of Hungary. Paleozoic II. Academic, Budapest, p 445 (in Hungarian) Google Scholar
  26. Gaab AS, Poller U, Janák M, Kohút M, Todt W (2005) Zircon U–Pb geochronology and isotopic characterization for the pre-Mesozoic basement of the Northern Veporic unit (Central Western Carpathians, Slovakia). Schweiz Mineral Petrogr Mitt 85:69–88Google Scholar
  27. Gärtner A, Villeneuve M, Linnemann U, El Archi A, Bellon H (2013) An exotic terrane of Laurussian affinity in the Mauretanides and Souttoufides (Moroccan Sahara). Gondwana Res 24:687–699CrossRefGoogle Scholar
  28. Gehrels GE, Dickinson WR, Reley BCD, Finney SC, Smith MT (2000) Detrital zircon geochronology of the Roberts Mountains allochthon. In: Soreghan MJ, Gehrels GE (eds) Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California. Geol Soc Am Spec Pap, vol 347, pp 19–42Google Scholar
  29. Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073CrossRefGoogle Scholar
  30. Grecula P, Együd K (1977) Position of the Zemplín Inselberg in the tectonic frame of the Carpathians. Miner Slov 9(6):449–462 (in Slovak, English summary) Google Scholar
  31. Grecula P, Együd K (1982) Lithostratigraphy of Upper Paleozoic and Lower Triassic strata of the Zemplínske vrchy Mts. (SE Slovakia). Miner Slov 14:221–239 (in Slovak) Google Scholar
  32. Grecula P, Kaličiak M, Tözsér J, Varga I (1981) Geology of the borderland between the West and East Carpathians in the work of Jan Slávik. In: Grecula P (ed) New data, correlations and problems. Seminary Geological days of Jan Slávik. Spec Issue of Slov Geol Surv, pp 17–32 (in Slovak) Google Scholar
  33. Guttiérrez-Alonso G, Fernández-Suárez J, Pastor-Galán D, Johnston ST, Linnemann U, Hoffman M, Shaw J, Colmenero JR, Hernández P (2015) Significance of detrital zircons in Siluro-Devonian rocks from Iberia. J Geol Soc 172:309–322.  https://doi.org/10.1144/jgs2014-118 CrossRefGoogle Scholar
  34. Guynn J, Gehrels GE (2010) Comparison of detrital zircon age distribution using the K-S test. University of Arizona, Tuscon, pp 1–16 http://sites.google.com/a/laserchron.org/laserchron/home. Accessed 8 Mar 2017
  35. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, Geol Soc Spec Publ, vol 19, pp 67–81Google Scholar
  36. Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304 (In: Murphy JB, Nance RD, Johnson ST (eds) Tectonic evolution of the Iberian margin of Gondwana and of correlative region. A celebration of the career of Cecilio Quesada) CrossRefGoogle Scholar
  37. International Commission on Stratigraphy (2017) International Chronostratigraphic Chart v 2017/02. http://www.stratigraphy.org/ICSchart/ChronostratChart 2017-02.pdf
  38. Izart A, The 343 IGCP working group (1998) Stratigraphic correlations between the continental and marine Tethyan and Peri-Tethyan basins during the Late Carboniferous and the Early Permian. Geodiversitas 20(4):521–596 (In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlations 2) Google Scholar
  39. Janák M, Finger F, Plašienka D, Petrík I, Humer B, Méreš Š, Lupták B (2002) Variscan high P-T recrystallization of Ordovician granitoids in the Veporic unit (Nízke Tatry Mountains, Western Carpathians): new petrological and geochronological data. Geolines 14:38–39Google Scholar
  40. Kisházi P, Ivancsics J (1988) Contribution to the petrology of crystalline schists in the Zemplín structure. Bull Hung Geol Soc 2:109–124Google Scholar
  41. Kohút M, Poller U, Gurk Ch, Todt W (2008) Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mts. Acta Geol Polonica 58:371–382Google Scholar
  42. Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geol Carpath 60(5):345–350CrossRefGoogle Scholar
  43. Kolodner K, Avigad D, McWilliams M, Wooden LJ, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143(3):367–391.  https://doi.org/10.1017/S0016756805001640 CrossRefGoogle Scholar
  44. Kráľ J, Hess JC, Kober B, Lippolt HJ (1997) 207Pb/206Pb and 40Ar/39Ar age data from plutonic rocks of the Strážovské vrchy Mts. basement, Western Carpathians. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov Monograph, Bratislava, pp 253–260Google Scholar
  45. Kröner A, Stern RJ (2005) Pan-African Orogeny. Encyclopedia of Geology, vol 1. Elsevier, Amsterdam, pp 1–12 2004)CrossRefGoogle Scholar
  46. Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. Mem Geol Soc Lond 30:69–74 (In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica) CrossRefGoogle Scholar
  47. Lelkes-Felvári G, Árkai P, Sassi FP, Balogh K (1996) Main features of the regional metamorphic events in Hungary: a review. Geol Carpath 47:257–270Google Scholar
  48. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  49. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278CrossRefGoogle Scholar
  50. Ludwig KR (2005b) User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–71. http://www.bgca.org/klprogrammenu.html
  51. Ludwig KR (2005аa) SQUID 1.12 A Userʼs Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–22. http://www.bgca.org/klprogrammenu.html
  52. Ludwig KR (2012) User’s Manual for Isoplot 3.75. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–75. http://www.bgc.org/isoplot.html
  53. Magyar J (1986) Geology and petrography of the crystalline window of the Zemplinicum and the surrounding formations. Manuscript. Comenius University, Bratislava, p 78 (in Slovak) Google Scholar
  54. Maheľ M (1986) Geological structure of the Czechoslovak Carpathians, part 1: Paleoalpine units. Monograph. Veda Publishing House, Bratislava, pp 1–503 (in Slovak) Google Scholar
  55. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:228CrossRefGoogle Scholar
  56. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst.  https://doi.org/10.1029/2000GC000109 Google Scholar
  57. Meinhold G, Kostopoulos D, Frei D, Himmerkus F, Reischmann T (2010) U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: paleotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int J Earth Sci (Geol Rundsch) 99:813–832CrossRefGoogle Scholar
  58. Mello J, Reichwalder P, Vozárová A (1998) Bôrka Nappe: high-pressure relic from the subduction-accretion prism of the Meliata Ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–274Google Scholar
  59. Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst F-X, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin Y-G, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang X-D, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scale of Central and West Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaegeogr Palaeoclim Palaeoecol 240(1–2):318–372CrossRefGoogle Scholar
  60. Milička J, Franců J, Horváth I, Toman B (1991) Optical, structural and thermal characterization of meta-anthracite from Zemplinicum, West Carpathians. Geol Zborn Geol Carpath 42(1):53–58Google Scholar
  61. Murphy JB, Nance RD (1989) Model for evolution of the Avalonian-Cadomian belt. Geology 17:735–738CrossRefGoogle Scholar
  62. Murphy JB, Eguíluz L, Zulauf G (2002) Cadomian Orogens, peri-Gondwana correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9CrossRefGoogle Scholar
  63. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic-Early Paleozoic evolution of peri-Gondwanan terranes: implication for Laurentia-Gondwana connection. Int J Earth Sci (Geol Rundsch) 93:659–682CrossRefGoogle Scholar
  64. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  65. Němejc F (1946) Contribution to knowledge of floral remnants and stratigraphical division of Permo-Carboniferous of Slovakia. Rozpravy II Třídy České Akademie Věd. Praha 15:1–34 (in Czech) Google Scholar
  66. Němejc F, Obrhel J (1958) Investigation of some plant imprints from Permian–Carboniferous of Slovakia. Zprávy o geologických výskumech v roce 1957. Ústřední ústav geologický, Praha, pp 165–166 (in Czech) Google Scholar
  67. Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352(1–2):87–103.  https://doi.org/10.1016/S0040-1951(02)00190-7 CrossRefGoogle Scholar
  68. Neubauer F, Frisch W, Hansen BT (2002) Early Paleozoic tectonothermal events in basement complexes of the eastern Greywacke Zone (Eastern Alps): evidence from U-Pb zircon data. Int J Earth Sci (Geol Rundsch) 91:775–786CrossRefGoogle Scholar
  69. Pantó G (1965) A Tokaji-hegység harmadkor elötti képzödményei. Magyar All Foldt in Évi Jel az 1963. Evrol, Budapest, pp 227–241 (in Hungarian) Google Scholar
  70. Pantó G, Balogh K, Kovács S, Sámsoni Z (1967) Rb/Sr check of Assyntian and Caledonian igneous activity and metamorphism in NE-Hungary. Acta Geol Acad Sci Hung 11:279–282Google Scholar
  71. Pearce JA (1996) A user’s guide to basalt discrimination diagrams In: Wymann DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geo Assoc Canada, Short Course Note, vol 12, pp 79–113Google Scholar
  72. Pearce JA, Harris NBW, Tindle AG (1984) Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  73. Planderová E, Sitár V, Grecula P, Együd K (1981) Biostratigraphically evaluation graphite shales of Zemplín Inselgebirge (Eastern Slovakia). Miner Slovaca 13:97–128 (in Slovak, English summary) Google Scholar
  74. Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 107–130Google Scholar
  75. Poller U, Todt W (2000) U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Geol Soc Am Spec Pap 350:235–243Google Scholar
  76. Poller U, Janák M, Kohút M, Todt W (2000) Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int J Earth Sci (Geol Rundsch) 89(2):336–349.  https://doi.org/10.1007/s005310000082 CrossRefGoogle Scholar
  77. Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59(1):3–18Google Scholar
  78. Putiš M, Ivan P, Kohút M, Spišiak J, Siman P, Radvanec M, Uher P, Sergeev S, Larionov A, Méreš Š, Demko R, Ondrejka M (2009) Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bull Soc Géol Fr 180(6):461–471CrossRefGoogle Scholar
  79. Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Monograph. Geological Survey of Slovak Republic, Bratislava, pp 15–24Google Scholar
  80. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust – a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  81. Shaw J, Guttieréz-Alonso G, Johnston ST, Pastor-Galán D (2014) Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geol Soc Am Bull.  https://doi.org/10.1130/B30935.1 Google Scholar
  82. Slávik J (1976) Zemplinicum, a new tectonic unit of the Central Western Carpathians. Geologické Práce Správy 65:7–19 (in Slovak) Google Scholar
  83. Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14. Instituto Geológico y Minero de España, Madrid, pp 567–574Google Scholar
  84. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  85. Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  86. Šucha V, Kraus I, Madejová J (1994) Ammonium illite from anchimetamorphic shale associated with anthracite in Zemplinicum of the Western Carpathians. Clays Clays Miner 29:369–377Google Scholar
  87. Sun S-S, McDonough WF (1989) Chemical and isotope systematic of oceanic basalts implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345 (In: Sounders AD, Norry MJ (eds) Magmatism in ocean basins) CrossRefGoogle Scholar
  88. Ustaömer PA, Ustaömer T, Gerdes A, Zulauf G (2011) Detrital zircon ages from a Lower Ordovician quartzite of the Istambul exotic terrane (NW Turkey): evidence for Amazonian affinity. Int J Earth Sci (Geol Rundsch) 100:23–41.  https://doi.org/10.1007/s00531-009-0498-1 CrossRefGoogle Scholar
  89. von Raumer JF, Stampfli GM (2008) The birth of Rheic Ocean—Early Paleozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20CrossRefGoogle Scholar
  90. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22CrossRefGoogle Scholar
  91. Vozár J, Hanzel V, Vozárová A, Zlínska A (1986) Data processing from the borehole BB-1 (650 m), Byšta locality. Manuscript. Archives of Slovak Geological Survey, Bratislava (in Slovak) Google Scholar
  92. Vozárová A (1986) Problems with the lithostratigraphic classification of the Permo-Carboniferous of the Zemplínske vrchy Mts. and characteristics of the Luhyňa Formation. Regionálna geológia Západných Karpát 21:39–46 (in Slovak) Google Scholar
  93. Vozárová A (1991) Petrology of crystalline rocks of Zemplinicum (West Carpathians). Západné Karpaty. Sér Miner Petr Geoch Metalog 14:7–59 (in Slovak, English summary) Google Scholar
  94. Vozárová A (1998) Late Carboniferous to Early Permian time interval in the Western Carpathians: Northern Tethys Margin. Geodiversitas 20(4):621–641 (In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlations 2) Google Scholar
  95. Vozárová A, Vozár J (1977) Principal features of the Late Paleozoic paleogeography in the Western Carpathians. Geologické Práce Správy 64:81–97 (in Slovak, English summary) Google Scholar
  96. Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. Monograph D Štúr Inst Geol, Bratislava, p 314Google Scholar
  97. Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian /Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U–Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99(Suppl 1):S17–S37.  https://doi.org/10.1007/s00531-009-0454-0 CrossRefGoogle Scholar
  98. Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012) U–Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): evidence for Avalonian–Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936.  https://doi.org/10.1007/s00531-011-0705-8 CrossRefGoogle Scholar
  99. Vozárová A, Laurinc D, Šarinová K, Larionov A, Presnyakov S, Rodionov N, Paderin I (2013) Pb ages of detrital zircons in relation to geodynamic evolution: Paleozoic of the Northern Gemericum (Western Carpathians, Slovakia). J Sediment Res 83:915–927.  https://doi.org/10.2110/jsr.2013.66 CrossRefGoogle Scholar
  100. Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2017a) New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106:2147–2170.  https://doi.org/10.1007/s00531-016-1420-2 CrossRefGoogle Scholar
  101. Vozárová A, Larionov A, Šarinová K, Vďačný M, Lepekhina E, Vozár J, Lvov P (2017b) Detrital zircon from the Hronicum Carboniferous–Permian sandstones (Western Carpathians, Slovakia): depositional age and provenance. Int J Earth Sci (Geol Rundsh).  https://doi.org/10.1007/s00531-017-1556-8 Google Scholar
  102. Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon–melt distribution coefficient. Acta Geol Sinica (English Edition) 85(1):164–174.  https://doi.org/10.1111/j.1733-6724.2011.00387.x CrossRefGoogle Scholar
  103. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett 19:1–23CrossRefGoogle Scholar
  104. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35 (In: McKissen MA, Shanks WC, Ridley WS (eds) Applications of microanalytical techniques to understanding mineralizing processes) CrossRefGoogle Scholar
  105. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  106. Zulauf G, Dörr W, Fiala J, Romano SS (2007) Crete to Minoan terranes: age constraints from U-Pb dating of detrital zircons. Geol Soc Am Spec Publ 423:401–409Google Scholar
  107. Zulauf G, Dörr W, Fischer-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2015) Closure of Paleotethys in the external Hellenides: constraints from U-Pb ages of magmatic and detrital zircons (Crete). Gondwana Res 28(2):642–667CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mineralogy and Petrology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Centre of Isotopic Research, A. P. Karpinsky Russian Geological Research Institute (FGBU “VSEGEI”)Saint PetersburgRussia
  3. 3.Earth Science Institute of the Slovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations