Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 1, pp 1–25 | Cite as

Interpretation and significance of combined trace element and U–Pb isotopic data of detrital rutile: a case study from late Ordovician sedimentary rocks of Saxo-Thuringia, Germany

  • Delia RöselEmail author
  • Thomas Zack
  • Andreas Möller
Original Paper
  • 142 Downloads

Abstract

The U–Pb age and trace element composition of detrital rutile provide information about the metamorphic history of the source region that cannot be constrained by traditional U–Pb dating of detrital zircon. Previous provenance investigations focussed on only one of these methods. Based on a large LA-ICP-MS trace element and U–Pb isotopic dataset of detrital rutile and U–Pb isotopic data of detrital zircon from late Ordovician sedimentary rocks of Saxo-Thuringia, Germany, this paper discusses the application and significance of combining these methods in provenance investigations. U–Pb age spectra from the detrital zircons analysed show multiple age components (multimodal age spectra) in all samples. This is in contrast with the detrital rutile data, as only one sample yielded a multimodal U–Pb age distribution. Multimodal age spectra of detrital rutile are most likely preserved in sediments from (large) catchment areas with complex geological histories. They may also be related to specific sedimentation events, such as glacial washout during the retreat of large ice shields (e.g. the Hirnantian glaciation of Gondwana). Unimodal age spectra are however not restricted to small catchment areas, if the provenance region is characterized by a pervasive thermal overprint such as the Pan-African orogeny throughout Gondwana. Unimodal age distributions may further consist of overlapping age cluster detectable by different trace element composition of the detrital rutile grains. The combined U–Pb age and trace element data from detrital rutile grains demonstrate that rutile sourced from metapelitic rocks yield reliable and precise U–Pb ages. In contrast, detrital rutile classified to be of metamafic origin generally has too low uranium concentrations to be dated reliably by LA-ICP-MS. Detrital rutile records low- to medium-grade metamorphic events in the source region and therefore has the potential to better constrain the maximum depositional age of sedimentary rocks in comparison to U–Pb dating of detrital zircon.

Keywords

Provenance Rutile Zircon U–Pb dating Saxo-Thuringia Gondwana 

Notes

Acknowledgements

First of all, we would like to thank G. Meinhold and H. Bahlburg for very constructive reviews. The editorial handling from A. Gerdes and W.-C. Dullo is highly acknowledged. A. Gerdes further provided additional comments that helped to improve the manuscript. J. Oalmann and M. Barth are gratefully thanked for assistance during LA-ICP-MS analyses. The authors gratefully acknowledge R. White and S.D. Boger for reading a pre-submission version of this manuscript. S. Buhre is acknowledged for his help with sample preparation. Financial support was provided by the Deutsche Forschungsgemeinschaft Grant ZA285/6-1.

Supplementary material

531_2018_1643_MOESM1_ESM.xls (470 kb)
Supplementary material 1 (XLS 469 KB)
531_2018_1643_MOESM2_ESM.pdf (608 kb)
Supplementary material 2 (PDF 607 KB)

References

  1. Allen CM, Campbell IH (2007) Spot dating of detrital rutile by LA–Q–ICP–MS: a powerful provenance tool. GSA Denver Annual Meeting, Abstract Paper 196-12Google Scholar
  2. Aulbach S, O’Reilly SY, Pearson NJ (2011) Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf–Nb/Ta variability. Contrib Mineral Petrol 162(5):1047–1062.  https://doi.org/10.1007/s00410-011-0639-y Google Scholar
  3. Avigad, D, Kolodner K, McWilliams M, Persing H, Weissbrod T (2003) Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31(3):227–230.  https://doi.org/10.1130/0091-7613(2003)031%3C0227:OONGCS%3E2.0.CO;2 Google Scholar
  4. Avigad D, Gerdes A, Morag N, Bechstädt T (2012) Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia. Implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res 21(2–3):690–703.  https://doi.org/10.1016/j.gr.2011.06.005 Google Scholar
  5. Avigad D, Morag N, Abbo A, Gerdes A (2017) Detrital rutile U–Pb perspective on the origin of the great Cambro–Ordovician sandstone of North Gondwana and its linkage to orogeny. Gondwana Res 51:17–29.  https://doi.org/10.1016/j.gr.2017.07.001 Google Scholar
  6. Bahlburg H, Vervoort JD, DuFrane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17(2–3):223–235.  https://doi.org/10.1016/j.gr.2009.11.007 Google Scholar
  7. Blackburn T, Bowring SA, Schoene B, Mahan K, Dudas F (2011) U–Pb thermochronology. Creating a temporal record of lithosphere thermal evolution. Contrib Mineral Petrol 162(3):479–500.  https://doi.org/10.1007/s00410-011-0607-6 Google Scholar
  8. Boger SD, White RW (2003) The metamorphic evolution of metapelitic granulites from Radok Lake, northern Prince Charles Mountains, east Antarctica; evidence for an anticlockwise P-T path. J Metamorph Geol 21(3):285–298.  https://doi.org/10.1046/j.1525-1314.2003.00442.x Google Scholar
  9. Boniface N, Schenk V, Appel P (2012) Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambr Res 192:16–33Google Scholar
  10. Bracciali L, Parrish RR, Horstwood MSA, Condon DJ, Najman Y (2013) UPb LA–(MC)–ICP–MS dating of rutile. New reference materials and applications to sedimentary provenance. Chem Geol 347:82–101.  https://doi.org/10.1016/j.chemgeo.2013.03.013 Google Scholar
  11. Buchwaldt R, Toulkeridis T, Todt W, Ucakuwun EK (2008) Crustal age domains in the Kibaran belt of SW-Uganda. Combined zircon geochronology and Sm–Nd isotopic investigation. J Afr Earth Sc 51(1):4–20.  https://doi.org/10.1016/j.jafrearsci.2007.11.001 Google Scholar
  12. Chalokwu CI, Ghazi MA, Foord EE (1997) Geochemical characteristics and KAr ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana. J Afr Earth Sc 24(1–2):1–9.  https://doi.org/10.1016/S0899-5362(97)00022-5 Google Scholar
  13. Cherniak DJ (2000) Pb diffusion in rutile. Contrib Mineral Petrol 139(2):198–207.  https://doi.org/10.1007/PL00007671 Google Scholar
  14. Cherniak DJ, Manchester J, Watson EB (2007) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261(1–2):267–279.  https://doi.org/10.1016/j.epsl.2007.06.027 Google Scholar
  15. Comas-Cufí M, Thió-Henestrosa S (2011) CoDaPack 2.0: a stand-alone, multi-platform compositional software. In: CoDaWork’11: 4th International Workshop on Compositional Data AnalysisGoogle Scholar
  16. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500.  https://doi.org/10.2113/0530469 Google Scholar
  17. Deynoux M, Affaton P, Trompette R, Villeneuve M (2006) Pan-African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian cratonic and foreland basins of West Africa. J Afr Earth Sc 46(5):397–426.  https://doi.org/10.1016/j.jafrearsci.2006.08.005 Google Scholar
  18. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata. A test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125.  https://doi.org/10.1016/j.epsl.2009.09.013 Google Scholar
  19. Dorausch C (1992) Schwermineralanalytische Untersuchungen an quarzitischen Gesteinen des Kambroordoviziums im Vogtland sowie Vergleich der erhaltenen Ergebnisse mit vorliegenden Daten aus anderen Gebieten des Saxothuringikums. Studienarbeit, Technische Universität Bergakademie Freiberg, GermanyGoogle Scholar
  20. Ellenberg J (1998) Der ordovizische Hauptquarzit in Thüringen—eine Fan-Delta-Bildung? Geowissenschaftliche Mitteilungen von Thüringen 6:7–20Google Scholar
  21. Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Mineral Petrol 165(4):757–779.  https://doi.org/10.1007/s00410-012-0834-5 Google Scholar
  22. Falk F (1991) Schwermineralanalytische Untersuchungen im Thüringischen Schiefergebirge. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 8:477–488Google Scholar
  23. Fernandez-Alonso M, Cutten H, Waele B de, Tack L, Tahon A, Baudet D, Barritt SD (2012) The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt). The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambr Res 216–219:63–86.  https://doi.org/10.1016/j.precamres.2012.06.007 Google Scholar
  24. Foley SF, Barth M, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64(5):933–938.  https://doi.org/10.1016/S0016-7037(99)00355-5 Google Scholar
  25. Force ER (1980) The provenance of rutile. SEPM JSR.  https://doi.org/10.1306/212F7A31-2B24-11D7-8648000102C1865D Google Scholar
  26. Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen. A review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106.  https://doi.org/10.1016/j.jafrearsci.2013.06.004 Google Scholar
  27. Garfunkel Z (2015) The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res 28(4):1257–1281.  https://doi.org/10.1016/j.gr.2015.05.011 Google Scholar
  28. Goldsmith R, Force ER (1978) Distribution of rutile in metamorphic rocks and implications for placer deposits. Mineral Deposita.  https://doi.org/10.1007/BF00206567 Google Scholar
  29. Goscombe B, Armstrong R, Barton JM (2000) Geology of the Chewore Inliers, Zimbabwe. Constraining the Mesoproterozoic to Palæozoic evolution of the Zambezi Belt. J Afr Earth Sc 30(3):589–627.  https://doi.org/10.1016/S0899-5362(00)00041-5 Google Scholar
  30. Gueye M, Siegesmund S, Wemmer K, Pawlig S, Drobe M, Nolte N, Layer P (2007) New evidences for an early Birimian evolution in the West African Craton. An example from the Kedougou-Kenieba inlier, southeast Senegal. S Afr J Geol 110(4):511–534.  https://doi.org/10.2113/gssajg.110.4.511 Google Scholar
  31. Hames WE, Bowring SA (1994) An empirical evaluation of the argon diffusion geometry in muscovite. Earth Planet Sci Lett 124(1–4):161–169.  https://doi.org/10.1016/0012-821X(94)00079-4 Google Scholar
  32. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40(3):311–332.  https://doi.org/10.1111/j.1751-908X.2016.00379.x Google Scholar
  33. Jackson SE, Pearson NJ, Griffin WL, Belousova E (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1–2):47–69.  https://doi.org/10.1016/j.chemgeo.2004.06.017 Google Scholar
  34. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429.  https://doi.org/10.1111/j.1751-908X.2011.00120.x Google Scholar
  35. Katzung G (1999) Records of the Late Ordovician glaciation from Thuringia. Germany Zeitschrift der Deutschen Geologischen Gesellschaft 150(3):595–617Google Scholar
  36. Kelly NM, Möller A (2012) Thermal reworking of high-grade gneisses—evidence from U–Pb rutile ages in the East Antarctic Shield. Geological Society of America, Annual Meeting, Charlotte, North Carolina, USA, Abstracts with Programs 44:586Google Scholar
  37. Kolodner K, Avigad D, McWilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian–Ordovician sandstone. U–Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143(03):367.  https://doi.org/10.1017/S0016756805001640 Google Scholar
  38. Kooijman E, Smit MA, Mezger K, Berndt J (2012) Trace element systematics in granulite facies rutile. Implications for Zr geothermometry and provenance studies. J Metamorph Geol 30(4):397–412.  https://doi.org/10.1111/j.1525-1314.2012.00972.x Google Scholar
  39. Kurze M (1966) Die tektonisch-fazielle Entwicklung im Nordostteil des Zentralsächsischen Lineaments. Freib Forsch C201:5–89Google Scholar
  40. Kurze M, Linnemann U, Tröger KA (1992) Weesensteiner Gruppe und Altpaläozoikum in der Elbtalzone (Sachsen). Geotektonische Forschungen 77:101–167Google Scholar
  41. Kydonakis K, Kostopoulos D, Poujol M, Brun J-P, Papanikolaou D, Paquette J-L (2014) The dispersal of the Gondwana Super-fan System in the eastern Mediterranean. New insights from detrital zircon geochronology. Gondwana Res 25(3):1230–1241.  https://doi.org/10.1016/j.gr.2013.05.009 Google Scholar
  42. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28(2).  https://doi.org/10.1029/2007TC002251
  43. Le Heron DP, Dowdeswell JA (2009) Calculating ice volumes and ice flux to constrain the dimensions of a 440 Ma North African ice sheet. J Geol Soc 166(2):277–281.  https://doi.org/10.1144/0016-76492008-087 Google Scholar
  44. Lemke W (1985) Sedimentpetrographische Untersuchungen an quarzitischen Gesteinen des Paläozoikums im Südteil der DDR. Dissertation, Technische Universität Bergakademie Freiberg, GermanyGoogle Scholar
  45. Linnemann U (ed) (2003) Das Saxothuringikum. Geologica Saxonica, 48/49Google Scholar
  46. Linnemann U, Buschmann B (1995) Die cadomische Diskordanz im Saxothuringikum (ober-kambrisch-tremadocische overlap-Sequenzen). Zeitschrift für geologische Wissenschaften 23:707–727Google Scholar
  47. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif). Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci (Geol Rundsch) 93(5):683–705.  https://doi.org/10.1007/s00531-004-0413-8 Google Scholar
  48. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean. Constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geological Society of America Special Papers 423, pp 61–96Google Scholar
  49. Linnemann U, Hofmann M, Romer RL, Gerdes A (2010) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia. From the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 59–98Google Scholar
  50. Ludwig KR (2003) Users manual for Isoplot 3.00. A Geochronological toolkit for Microsoft ExcelTM Google Scholar
  51. Luvizotto GL, Zack T (2009) Nb and Zr behavior in rutile during high-grade metamorphism and retrogression. An example from the Ivrea–Verbano Zone. Chem Geol 261(3–4):303–317.  https://doi.org/10.1016/j.chemgeo.2008.07.023 Google Scholar
  52. Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, Eynatten H von (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261(3–4):346–369.  https://doi.org/10.1016/j.chemgeo.2008.04.012 Google Scholar
  53. Martin U, Reischmann T, Bahlburg H, Schätz M, Tait J, Bachtadse V (2003) The Early Palaeozoic Break-up of Northern Gondwana. Sedimentology, Physical Volcanology and Geochemistry of a Submarine Volcanic Complex in the Bavarian Facies Association, Saxothuringian Basin, Germany. Gondwana Res 6(4):839–858.  https://doi.org/10.1016/S1342-937X(05)71029-7 Google Scholar
  54. Meinhold G, Anders B, Kostopoulos D, Reischmann T (2008) Rutile chemistry and thermometry as provenance indicator. An example from Chios Island. Greece Sediment Geol 203(1–2):98–111.  https://doi.org/10.1016/j.sedgeo.2007.11.004 Google Scholar
  55. Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011a) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312(1–2):164–175.  https://doi.org/10.1016/j.epsl.2011.09.056 Google Scholar
  56. Meinhold G, Morton AC, Fanning CM, Whitham AG (2011b) U–Pb SHRIMP ages of detrital granulite-facies rutiles. Further constraints on provenance of Jurassic sandstones on the Norwegian margin. Geol Mag 148(03):473–480.  https://doi.org/10.1017/S0016756810000877 Google Scholar
  57. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23(2):661–665.  https://doi.org/10.1016/j.gr.2012.05.003 Google Scholar
  58. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U–Pb ages of metamorphic rutile. Application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96(1–2):106–118.  https://doi.org/10.1016/0012-821X(89)90126-X Google Scholar
  59. Möller A, Appel P, Mezger K, Schenk V (1995) Evidence for a 2 Ga subduction zone: Eclogites in the Usagaran belt of Tanzania. Geology 23(12):1067–1070Google Scholar
  60. Möller A, Mezger K, Schenk V (2000) U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high-pressure granulites in Tanzania, East Africa. Precambr Res 104:123–147Google Scholar
  61. Morton AC, Chenery S (2009) Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic–Paleocene sandstones of the Norwegian Sea. J Sediment Res 79:540–553Google Scholar
  62. Morton AC, Hallsworth C (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sed Geol 90(3–4):241–256.  https://doi.org/10.1016/0037-0738(94)90041-8 Google Scholar
  63. Okay N, Zack T, Okay AI, Barth M (2011) Sinistral transport along the Trans-European Suture Zone. Detrital zircon–rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol Mag 148(03):380–403.  https://doi.org/10.1017/S0016756810000804 Google Scholar
  64. Reitz E, Heuse T (1994) Palynofazies im Oberordovizium des Saxothuringikums. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 6:348–360Google Scholar
  65. Rösel D, Zack T, Barth M, Möller A, Oalmann J (2011) U/Pb age spectra of detrital rutile as a powerful tool for provenance analysis. Mineral Mag 75:1735Google Scholar
  66. Rösel D, Boger SD, Möller A, Gaitzsch B, Barth M, Oalmann J, Zack T (2014a) Indo-Antarctic derived detritus on the northern margin of Gondwana. Evidence for continental-scale sediment transport. Terra Nova 26(1):64–71.  https://doi.org/10.1111/ter.12070 Google Scholar
  67. Rösel D, Zack T, Boger SD (2014b) LA–ICP–MS U–Pb dating of detrital rutile and zircon from the Reynolds Range. A window into the Palaeoproterozoic tectonosedimentary evolution of the North Australian Craton. Precambr Res 255:381–400.  https://doi.org/10.1016/j.precamres.2014.10.006 Google Scholar
  68. Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140(4):458–468.  https://doi.org/10.1007/PL00007673 Google Scholar
  69. Sircombe KN, Hazelton ML (2004) Comparison of detrital zircon age distributions by kernel functional estimation. Sed Geol 171(1–4):91–111.  https://doi.org/10.1016/j.sedgeo.2004.05.012 Google Scholar
  70. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35.  https://doi.org/10.1016/j.chemgeo.2007.11.005 Google Scholar
  71. Small D, Parrish RR, Austin WEN, Cawood PA, Rinterknecht V (2013) Provenance of North Atlantic ice-rafted debris during the last deglaciation—a new application of U–Pb rutile and zircon geochronology. Geology 41(2):155–158.  https://doi.org/10.1130/G33594.1 Google Scholar
  72. Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, Nni J, Kankeu B, Ngako V, Hell JV (2006) Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J Afr Earth Sci 44(4–5):443–458.  https://doi.org/10.1016/j.jafrearsci.2005.11.012 Google Scholar
  73. Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate. A geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101(1–2):29–67.  https://doi.org/10.1016/j.earscirev.2010.01.002 Google Scholar
  74. Stratigraphische Kommission Deutschlands (1997) Stratigraphie von Deutschland II. Ordovizium, Kambrium, Vendium, Riphäikum. Teil I: Thüringen, Sachsen, Ostbayern. Courier Forschungsinstitut Frankfurt CFS(200)Google Scholar
  75. Stuart FM (2002) The exhumation history of orogenic belts from 40Ar/39Ar ages of detrital micas. Mineral Mag 66(1):121–135.  https://doi.org/10.1180/0026461026610017 Google Scholar
  76. Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56(4):303–332.  https://doi.org/10.1016/S0024-4937(00)00066-9 Google Scholar
  77. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25(6):703–713.  https://doi.org/10.1111/j.1525-1314.2007.00724.x Google Scholar
  78. Triebold S, Eynatten H von, Luvizotto GL, Zack T (2007) Deducing source rock lithology from detrital rutile geochemistry. An example from the Erzgebirge. Germany Chem Geol 244(3–4):421–436.  https://doi.org/10.1016/j.chemgeo.2007.06.033 Google Scholar
  79. Triebold S, Eynatten H von, Zack T (2012) A recipe for the use of rutile in sedimentary provenance analysis. Sed Geol 282:268–275.  https://doi.org/10.1016/j.sedgeo.2012.09.008 Google Scholar
  80. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194.  https://doi.org/10.1016/j.chemgeo.2012.04.021 Google Scholar
  81. von Eynatten H, Dunkl I (2012) Assessing the sediment factory. The role of single grain analysis. Earth Sci Rev 115(1–2):97–120.  https://doi.org/10.1016/j.earscirev.2012.08.001 Google Scholar
  82. von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geol Soc Am Bull 125(1–2):89–108.  https://doi.org/10.1130/B30654.1 Google Scholar
  83. Vry JK, Baker JA (2006) LA–MC–ICPMS Pb–Pb dating of rutile from slowly cooled granulites. Confirmation of the high closure temperature for Pb diffusion in rutile. Geochim Cosmochim Acta 70(7):1807–1820.  https://doi.org/10.1016/j.gca.2005.12.006 Google Scholar
  84. Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily. A zircon tale from the basement of the Peloritani Mountains. Gondwana Res 22(3–4):855–865.  https://doi.org/10.1016/j.gr.2011.12.007 Google Scholar
  85. Zack T, Kooijman E (2017) Petrology and geochronology of rutile. Rev Miner Geochem 83:443–467Google Scholar
  86. Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184(1–2):97–122.  https://doi.org/10.1016/S0009-2541(01)00357-6 Google Scholar
  87. Zack T, Eynatten H von, Kronz A (2004a) Rutile geochemistry and its potential use in quantitative provenance studies. Sed Geol 171(1–4):37–58.  https://doi.org/10.1016/j.sedgeo.2004.05.009 Google Scholar
  88. Zack T, Moraes R, Kronz A (2004b) Temperature dependence of Zr in rutile. Empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148(4):471–488.  https://doi.org/10.1007/s00410-004-0617-8 Google Scholar
  89. Zack T, Stockli DF, Luvizotto GL, Barth M, Belousova E, Wolfe MR, Hinton RW (2011) In situ U–Pb rutile dating by LA–ICP–MS. 208Pb correction and prospects for geological applications. Contrib Mineral Petrol 162(3):515–530.  https://doi.org/10.1007/s00410-011-0609-4 Google Scholar
  90. Žáčková E, Konopásek J, Košler J, Jeřábek P (2012) Detrital zircon populations in quartzites of the Krkonoše–Jizera Massif. Implications for pre-collisional history of the Saxothuringian Domain in the Bohemian Massif. Geol Mag 149(03):443–458.  https://doi.org/10.1017/S0016756811000744 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für GeologieTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  3. 3.Department of Earth Sciences, School of Physical SciencesUniversity of AdelaideAdelaideAustralia
  4. 4.Department of GeologyThe University of KansasLawrenceUSA

Personalised recommendations