International Journal of Earth Sciences

, Volume 108, Issue 1, pp 49–66 | Cite as

Petrogenesis and tectonic significance of Sardasht syenite–monzonite–gabbro–appinite intrusions, NW Iran

  • Abdolnaser FazlniaEmail author
Original Paper


The Middle Eocene intrusive rocks of Sardasht are located in the north-western part of the Sanandaj–Sirjan Zone (SSZ), NW of Iran. The Sardasht complex is a massive or occasionally layered intrusion composed of mafic (gabbro, appinitic gabbro, and appinite) and felsic (syenite and monzonite) units with respective calc-alkaline and alkaline-shoshonite affinities. Mafic mineral constituents are plagioclase, clinopyroxene, olivine, amphibole and opaque minerals which display granular, poikilitic, ophitic, and reaction textures. Amphibole is the dominant mafic mineral displaying an extraordinary variability in texture and chemical composition characterizing the appinite suites. The felsic units are mainly composed of perthitic alkali feldspar along with low abundances of plagioclase, biotite, amphibole and opaque minerals. The occurrence of mafic minerals with felsic minerals in the syenites are typical of agpaitic texture indicating that mafic aggregates and felsic units of the Sardasht intrusions were injected simultaneously. The abundance of major and trace elements show that mafic intrusions were originated from a metasomatized spinel lherzolite mantle with high concentrations of light rare earth elements (LREEs), Ti, Sr and Ba and low contents of Hf, Zr, Nb, and Ta. Mafic and felsic rocks showed the 87Sr/86Sr ratios ranging from 0.7044 to 0.7049 and from 0.7079 to 0.7095 with ε(Nd)40.7 Ma ≈ + 4.1–7.6 and + 4.0–4.6, respectively. Combining petrological, geochemical, and isotopic findings, it is suggested that the Sardasht mafic and felsic intrusions were formed as a result of Neotethys slab break-off and transtension along the SE-trending lateral strike-slip fault zones related to oblique subduction of the Neotethys plate underneath east the SSZ in Early to Middle Eocene. The felsic intrusions were resulted from partial melting of the arc crust base due to the injection of hydrous-mafic magma formed in the mantle wedge into the base.


Gabbro Appinite Syenite Nd–Sr isotopes Sanandaj–Sirjan zone Neotethys subduction 



Financial support from the Urmia University (Iran) is gratefully acknowledged. The author like to thank the Editors of International Journal of Earth Sciences, and the reviewers of the paper, Prof. Dr. Brendan Murphy and the anonymous reviewer, for their efforts.

Supplementary material

531_2018_1641_MOESM1_ESM.xls (44 kb)
Supplementary material 1 (XLS 44 KB)
531_2018_1641_MOESM2_ESM.xls (67 kb)
Supplementary material 2 (XLS 67 KB)


  1. Aghazade M, Badrzadeh Z (2015) Petrology and petrogenesis of alkaline and calc-alkaline lamprophyres in the NW Iran. Sci Q J Geosci 24:87–102 (in Persian) Google Scholar
  2. Aghazadeh M, Castro A, Rashidnejad Omran N, Emami MH, Moinvaziri H, Badrzadeh Z (2010) The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz mountains, NW Iran. J Asian Earth Sci 38:199–219CrossRefGoogle Scholar
  3. Akbari K, Tabatabaei Manesh SM, Safaei H (2016) Tectonic setting and petrological evidence for the emplacement of mylonitic granites within the middle part of Sanandaj-Sirjan shear zone from east and southeast of Chadegan, Iran. Geotectonics 50:313–326CrossRefGoogle Scholar
  4. Alavi M (1994) Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  5. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geoth Res 102:67–95CrossRefGoogle Scholar
  6. Ashrafi N, Jahangiri A, Ameri A, Hasebe N, Eby GN (2009) Biotite mineral chemistry of the Bozqush and Kaleybar alkaline igneous intrusions, NW Iran. Iran Soc Cryst Miner 17:381–394 (in Persian) Google Scholar
  7. Azizi H, Asahara Y (2013) Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: late Jurassic–early Cretaceous arc–continent collision. Int Geol Rev 55:1523–1540CrossRefGoogle Scholar
  8. Azizi H, Moinevaziri H (2009) Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J Geodyn 47:167–179CrossRefGoogle Scholar
  9. Azizi H, Asahara Y, Tsuboi M (2014) Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj–Sirjan Zone, NW Iran. Int Geol Rev 56:167–186CrossRefGoogle Scholar
  10. Azizi H, Mohammadi K, Asahara Y, Tsuboid M, Daneshvare N, Mehrabi B (2016) Strongly peraluminous leucogranite (Ebrahim-Attar granite) as evidence for extensional tectonic regime in the Cretaceous, Sanandaj-Sirjan zone, northwest Iran. Chem Erde 76:529–541CrossRefGoogle Scholar
  11. Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35:491–494CrossRefGoogle Scholar
  12. Bailey JC, Sørensen H, Andersen T, Kogarko LN, Rose-Hansen J (2006) On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilímaussaq alkaline complex, South Greenland. Lithos 91:301–318CrossRefGoogle Scholar
  13. Beard JS, Borgia A (1989) Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal Volcano, Costa Rica. Contrib Miner Pet 103:110–122CrossRefGoogle Scholar
  14. Berberian M (1995) Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224CrossRefGoogle Scholar
  15. Berberian F, Berberian M (1981) Tectono-Plutonic episodes in Iran. Geol Surv Iran Rep 52:566–593Google Scholar
  16. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  17. Biermanns L (1996) Chemical classification of gabbroic-dioritic rocks, based on TiO2, SiO2, FeOtotal, MgO, K2O, Y and Zr. In: Cobbol R, Fontbote L, Gapais D, Jaillard É, Marocco R, Poupinet G, Roperch R, Wörner G (eds) Andean geodynamics. Symposium International Sur la Geodynamigue Andine, pp 547–550Google Scholar
  18. Castro A (2003) The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain. J Petrol 44 (7):1309–1344CrossRefGoogle Scholar
  19. Castro A, Aghazadeh M, Badrzadeh Z, Chichorro M (2013) Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos 180–181:109–127CrossRefGoogle Scholar
  20. Chambers AD, Brown PE (1995) The Lilloise intrusion, East Greenland–fractionation of a hydrous alkali picritic magma. J Pet 36:933–963CrossRefGoogle Scholar
  21. Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Miner 71:317–324Google Scholar
  22. Davoudian AR, Genser J, Neubauer F, Shabanian N (2016) 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogeny. Gondwana Res 37:216–240CrossRefGoogle Scholar
  23. Falcon N (1969) Problems of relationship between surface structure and deep displacement illustrated by the Zagros range. In: Kent P, Satterhwaite G, Spencer A (eds) Time and place in orogeny, vol 3. Geol Soc Spec Pub, London, pp 9–22Google Scholar
  24. Fazlnia AN (2017) The evolution of arc magmatism related to Palaeotethys in the west of Salmas, north of the Sanandaj-Sirjan Zone, Iran. Geol Quart 61:124–137Google Scholar
  25. Fazlnia AN, Alizade A (2013) Petrology and geochemistry of the Mamakan gabbroic intrusions, Urumieh (Urmia), Iran: magmatic development of an intra-oceanic arc. Period Miner 82:263–290Google Scholar
  26. Fazlnia AN, Schenk V, van der Straaten F, Mirmohammadi MS (2009) Petrology, geochemistry, and geochronology of Trondhjemites from the Qori complex, Neyriz, Iran. Lithos 112:413–433CrossRefGoogle Scholar
  27. Fazlnia AN, Schenk V, Appel P, Alizade A (2013) Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj–Sirjan zone, Neyriz, Iran. Int J Earth Sci 102:1403–1426CrossRefGoogle Scholar
  28. Fowler MB, Henney PJ (1996) Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contrib Miner Pet 126:199–215CrossRefGoogle Scholar
  29. Fowler MB, Henney PJ, Darbyshire DPF, Greenwood PB (2001) Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. J Geol Soc 158:521–534CrossRefGoogle Scholar
  30. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Pet 42:2033–2048CrossRefGoogle Scholar
  31. Ghalamghash J, Bouchez JL, Vosoughi-Abedini M, Nédélec A (2009) The Urumieh Plutonic complex (NW Iran): record of the geodynamic evolution of the Sanandaj–Sirjan zone during Cretaceous times—Part II: magnetic fabrics and plate tectonic reconstruction. J Asian Earth Sci 36:303–317CrossRefGoogle Scholar
  32. Gill R (2010) Igneous rocks and processes: a practical guide. Wiley, Oxford, p 428Google Scholar
  33. Green JC (1992) Proterozoic rifts. In: Condie KC (ed) Proterozoic crustal evolution. Development in Precambrian Geology, vol 10, pp 97–149Google Scholar
  34. Haldar SK, Tišljar J (2014) Introduction to mineralogy and petrology. Elsevier, Amsterdam, 338 ppGoogle Scholar
  35. Hassanzadeh J, Wernicke BP (2016) The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35:586–621CrossRefGoogle Scholar
  36. Heilbronner R (2004) Mineral reaction and deformation in Plagioclase-Olivine composites: an experimental study. Ph.D. thesis. Universität Basel publishing, Heilbronner, pp 213Google Scholar
  37. Honarmand M, Li X-H, Nabatian G, Neubauer F (2017) In-situ zircon U–Pb age and Hf–O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj–Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks. Miner Pet 111:659–675CrossRefGoogle Scholar
  38. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  39. Jafari A, Fazlnia AN, Jamei S (2015) Mafic enclaves in north of Urumieh plutonic complex: evidence of magma mixing and mingling, Sanandaj–Sirjan zone, NW Iran. Arab J Geosci 8:7191–7206CrossRefGoogle Scholar
  40. Jafari A, Fazlnia AN, Jamei S (2018) Geochemistry, petrology and geodynamic setting of the Urumieh plutonic complex, SanandajeSirjan zone, NW Iran: new implication for Arabian and Central Iranian plate collision. J African Earth Sci 139:421–439CrossRefGoogle Scholar
  41. Jamali H, Yaghubpur A, Mehrabi B, Dilek Y, Daliran F, Meshkani A (2012) Petrogenesis and tectono-magmatic setting of meso-cenozoic magmatism in Azerbaijan province, Northwestern Iran. In: Al-Juboury A (ed) Petrology—new perspectives and applications. Earth and Planetary Sciences, Geology and Geophysics, New York, pp 39–56Google Scholar
  42. Karimi S, Tabatabaei Manesh SM (2016) Textural relations, P-T path, polymetamorphism and also geodynamic significance of metamorphic rocks of the Aligudarz-Khonsar region, Sanandaj-Sirjan zone, Iran. Petrology 24:100–115CrossRefGoogle Scholar
  43. Keskin M (2005) Domal uplift and volcanism in a collision zone without a mantle plume: evidence from Eastern Anatolia.
  44. Khalatbari-Jafari M, Juteau T, Bellon H, Whitechurch H, Cotton J, Emami H (2004) New geological, geochronological and geochemical investigations on the Khoy ophiolites and related formations, NW Iran. J Asian Earth Sci 23:507–535CrossRefGoogle Scholar
  45. Khodabande A (2005) Geological map of Naghadeh (1/100,000). Geological Survey of IranGoogle Scholar
  46. Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR, Chapman and Hall, Singapore 226 ppGoogle Scholar
  47. Kogarko LN, Williams CT, Woolley AR (2006) Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia. Mineral Mag 70:347–359CrossRefGoogle Scholar
  48. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  49. Lauri L, Mänttäri I (2002) The Kynsijärvi quartz alkali feldspar syenite, Koillismaa, eastern Finland silicic magmatism associated with 2.44 Ga continental rifting. Precambr Res 119:121–140CrossRefGoogle Scholar
  50. Le Bas MJ, Le Maitre RW, Strecheisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  51. Litvinovsky BA, Jahn B-M, Zanvilevich AN, Shadaev MG (2002) Crystal fractionation in the petrogenesis of an alkali monzodiorite–syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia. Lithos 64:97–130CrossRefGoogle Scholar
  52. Martin RF (2007) Amphiboles in the Igneous Environment. Rev Mineral Geochem 67:323–358CrossRefGoogle Scholar
  53. Mazhari SA (2008) Petrogenesis of Naqadeh-Sardasht plutons. Ph.D. thesis. Tarbiat Moallem University, Tehran, IR Iran, 216 ppGoogle Scholar
  54. Mazhari SA, Bea F, Amini S, Ghalamghash J, Molina JF, Montero P, Scarrow JH, Williams IS (2009) The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogeny, 166. Geol Soc Spec Pub, London, pp 53–69Google Scholar
  55. Mazhari SA, Amini S, Ghalamghash J, Bea F (2011) The origin of mafic rocks in the Naqadeh intrusive complex, Sanandaj-Sirjan Zone, NW Iran. Arab J Geosci 4:1207–1214CrossRefGoogle Scholar
  56. McClay KR, Whitehouse PS, Dooley T, Richards M (2004) 3D evolution of fold and thrust belts formed by oblique convergence. Mar Petrol Geol 21:857–877CrossRefGoogle Scholar
  57. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  58. McKenzie DP, O’Nions RK (1991) Partial melt distribution from inversion of rare earth element concentrations. J Petrol 32:1021–1091CrossRefGoogle Scholar
  59. Mehdipour Ghazi J, Mazzen M (2015) Geodynamic evolution of the Sanandaj-Sirjan zone, Zagros orogen, Iran. Turk J Earth Sci 24:513–528CrossRefGoogle Scholar
  60. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355CrossRefGoogle Scholar
  61. Moayyed M, Moazzen M, Calagari AA, Jahangiri A, Modjarrad M (2008) Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: Implications for deep-mantle metasomatism. Chem Erde 68:141–154CrossRefGoogle Scholar
  62. Mohajjel M, Fergusson CL (2014) Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int Geol Rev 56:263–287CrossRefGoogle Scholar
  63. Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. J Asian Earth Sci 21:397–412CrossRefGoogle Scholar
  64. Moinevaziri H, Akbarpour A, Azizi H (2015) Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arab J Geosci 8:3077–3088CrossRefGoogle Scholar
  65. Molina JF, Scarrow JH, Montero P, Bea F (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contrib Mineral Petrol 158:69–98CrossRefGoogle Scholar
  66. Molina JF, Montero P, Bea F, Scarrow JH (2012) Anomalous xenocryst dispersion during tonalite–granodiorite crystal mush hybridization in the mid crust: mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Lithos 153:224–242CrossRefGoogle Scholar
  67. Molinaro M, Zeyen H, Laurencin X (2005) Lithospheric structure beneath the southeastern Zagros Mountains, Iran: recent slab break-off? Terra Nova 17:1–6CrossRefGoogle Scholar
  68. Moreno JA, Molina JF, Montero P, Abu Anbar M, Scarrow JH, Cambeses A, Bea F (2014) Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos 192–195:56–85CrossRefGoogle Scholar
  69. Moreno JA, Molina JF, Montero P, Abu Anbar M, Scarrow JH, Cambeses A, Bea F (2016) Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites. Lithos 258–259:173–196CrossRefGoogle Scholar
  70. Murphy JB (2013) Appinite Suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Sci Rev 119:55–59CrossRefGoogle Scholar
  71. Murphy JB, Hynes AJ (1990) Tectonic control on the origin and orientation of igneous layering: An example from the Greendale Complex, Antigonish Highlands, Nova Scotia, Canada. Geology 18:403–406CrossRefGoogle Scholar
  72. Murphy JB, Blais SA, Tubrett M, McNeil D, Middleton M (2012) Microchemistry of amphiboles near the roof of a mafic magma chamber: Insights into high level melt evolution. Lithos 148:162–175CrossRefGoogle Scholar
  73. Nabavi MH (1976) Introduction to geological history of Iran. Geological Survey of Iran, Tehran, IR. Iran. 109 ppGoogle Scholar
  74. Neill I, Meliksetian K, Allen MB, Navasardyan G, Karapetyan S (2013) Pliocene–Quaternary volcanic rocks of NW Armenia: Magmatism and lithospheric dynamics within an active orogenic plateau. Lithos 180–181:200–215CrossRefGoogle Scholar
  75. Neill I, Meliksetian K, Allen MB, Navasardyan G, Kuiper K (2015) Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish–Iranian Plateau. Chem Geol 403:24–41CrossRefGoogle Scholar
  76. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  77. Pe-Piper G, Piper DJW, Tsikouras B (2010) The late Neoproterozoic Frog Lake hornblende gabbro pluton, Avalon Terrane of Nova Scotia: evidence for the origins of appinites. Can J Earth Sci 47:103–120CrossRefGoogle Scholar
  78. Pessagno EA, Ghazi AM, Kariminia M, Duncan RA, Hassanipak AA (2005) Tectonostratigraphy of the Khoy Complex, northwestern Iran. Stratigraphy 2:49–64Google Scholar
  79. Rahmani F (2015) Reconstruction of geochemistry and tectonomagmatic setting of the Gagash syenite–monzonite–gabbroic complex, South Naghadeh. M.Sc. thesis. Urmia University, I.R. Iran, p 83Google Scholar
  80. Raymond LA (2007) Petrology: the study of igneous, sedimentary and metamorphic rocks. McGraw Hill, New York, 720 ppGoogle Scholar
  81. Rickwood PC (1989) Boundary lines within petrologic diagrams, which use oxides of major and minor elements. Lithos 22:247–263CrossRefGoogle Scholar
  82. Roach R (1964) Mineral banding and appinites in the Bon Repos meladiorite, Guernsey, Channel Islands. Proceed Geol Assoc 75:185–198CrossRefGoogle Scholar
  83. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. First edition. Longman Scientific and Technical, Singapore, 352 ppGoogle Scholar
  84. Seo J, Choi S-G, Oh CW (2010) Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Res 18:479–496CrossRefGoogle Scholar
  85. Sha L-K (1995) Genesis of zoned hydrous ultramafic/mafic–silicic intrusive complexes: an MHFC hypothesis. Earth-Sci Rev 39:59–90CrossRefGoogle Scholar
  86. Shafaii Moghadam H, Ghorbani G, Zaki Khedr M, Fazlnia AN, Chiaradia M, Eyuboglu Y, Santosh M, Galindo Francisco C, Lopez Martinez M, Gourgaud A, Arai S (2014) Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau. Gondwana Res 26:1028–1050CrossRefGoogle Scholar
  87. Shafaii Moghadam H, Li X-H, Ling X-X, Stern RJ, Santos JF, Meinhold G, Ghorbani G, Shahabi S (2015) Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints. Lithos 212–215:266–279CrossRefGoogle Scholar
  88. Shafiei Bafti S, Mohajjel M (2015) Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj–Sirjan zone, Iran. Int J Earth Sci 104:587–601CrossRefGoogle Scholar
  89. Shahabpour J (2007) Island-arc affinity of the Central Iranian Volcanic Belt. J Asian Earth Sci 30:652–665CrossRefGoogle Scholar
  90. Shahabpour J (2010) Tectonic implications of the geochemical data from the Makran igneous rocks in Iran. Island Arc 19:676–689CrossRefGoogle Scholar
  91. Shahidi A, Jalali A (2004) Geological map of Sardasht (1/100,000). Geological Survey of IranGoogle Scholar
  92. Shand SJ (1927) Eruptive Rocks. Wiley-Blackwell, New York, 488 ppGoogle Scholar
  93. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  94. Sheikholeslami MR (2015) Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–Sirjan Zone, Iran. J Asian Earth Sci 106:130–149CrossRefGoogle Scholar
  95. Shellnutt J, Zhou M-F (2008) Permian, rifting related fayalite syenite in the Panxi region, SW China. Lithos 101:54–73CrossRefGoogle Scholar
  96. Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Petr Geol B 52:1229–1258Google Scholar
  97. Subrahmanyam C, Leelanandam C (1989) Differentiation due to probable initial immiscibility in the Musala pluton of the Mundwara Alkali Igneous Complex, Rajasthan, India. In: Leelanandam C (ed) Alkaline rocks. Memoirs - Geol Soc India, vol 15, pp 25–46Google Scholar
  98. Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AS, Norry MJ (eds) Magmatism in Ocean Basins, vol 42. Geol Soc Spec Pub, London, pp 313–345Google Scholar
  99. Upton BGJ, Parsons I, Emeleus CH, Hodson ME (1996) Layered alkaline igneous rocks of the Gardar Province, South Greenland. In: Cawthorn RG (ed) Layered intrusions. Develop Petrol, Netherlands, vol 15, pp 331–363Google Scholar
  100. Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch AA (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65CrossRefGoogle Scholar
  101. Vergés J, Saura E, Casciello E, Fernàndez M, Villaseñor A, Jiménez-Munt I, García-Castellanos D (2011) Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geol Mag 148:739–761CrossRefGoogle Scholar
  102. Wan B, Xiao W, Windley BF, Yuan C (2013) Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma not from the Tarim mantle plume Lithosphere 5:290–299Google Scholar
  103. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232CrossRefGoogle Scholar
  104. Winter JD (2014) Principles of igneous and metamorphic petrology. Pearson Education Limited, Edinburgh, pp 684Google Scholar
  105. Xiong XL, Adamb TJ, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218:339–359CrossRefGoogle Scholar
  106. Xiong F, Ma C, Wu L, Jiang H, Liu B (2015) Geochemistry, zircon U–Pb ages and Sr–Nd–Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: new evidence for Proto-Tethyan subduction. J Asian Earth Sci 111:681–697CrossRefGoogle Scholar
  107. Ye H-M, Li X-H, Li Z-X, Zhang C-L (2008) Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Res 13:126–138CrossRefGoogle Scholar
  108. Ying J-F, Zhang HF, Tang Y-J (2011) Crust–mantle interaction in the central North China Craton during the Mesozoic: evidence from zircon U–Pb chronology, Hf isotope and geochemistry of syenitic–monzonitic intrusions from Shanxi province. Lithos 125:449–462CrossRefGoogle Scholar
  109. Zhang X, Gao Y, Wang Z, Liu H, Ma Y (2012a) Carboniferous appinitic intrusions from the northern North China craton: geochemistry, petrogenesis and tectonic implications. J Geol Soc 169:337–351CrossRefGoogle Scholar
  110. Zhang X, Xue F, Yuan L, Ma Y, Wilde SA (2012b) Late Permian appinite–granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications. Lithos 155:201–217CrossRefGoogle Scholar
  111. Zhong Y, Ma C, Liu L, Zhao J, Zheng J, Nong J, Zhang Z (2014) Ordovician appinites in the Wugongshan domain of the Cathaysia Block, South China: geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime. Lithos 198–199:202–216CrossRefGoogle Scholar
  112. Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci Lett 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyUrmia UniversityUrmiaIslamic Republic of Iran

Personalised recommendations