A reliable and efficient micro-protocol for data transmission over an RTP-based covert channel

  • Maryam Azadmanesh
  • Mojtaba MahdaviEmail author
  • Behrouz Shahgholi Ghahfarokhi
Regular Paper


As the VoIP steganographic methods provide a low capacity covert channel for data transmission, an efficient and real-time data transmission protocol over this channel is required which provides reliability with minimum bandwidth usage. This paper proposes a micro-protocol for data embedding over covert storage channels or covert hybrid channels developed by steganographic methods where real-time transport protocol (RTP) is their underlying protocol. This micro-protocol applies an improved Go-Back-N mechanism which exploits some RTP header fields and error correction codes to retain maximum covert channel capacity while providing reliability. The bandwidth usage and the performance of the proposed micro-protocol are analyzed. The analyses indicate that the performance depends on the network conditions, the underlying steganographic method, the error correction code and the adjustable parameters of the micro-protocol. Therefore, a genetic algorithm is devised to obtain the optimal values of the adjustable micro-protocol parameters. The impact of network conditions, the underlying steganographic method and the error correction code on the performance are assessed through simulations. The performance of this micro-protocol is compared to an existing method named ReLACK where this micro-protocol outperforms its counterpart.


VoIP steganography Reliability Data embedding micro-protocol Covert channel Real-time protocol (RTP) 



  1. 1.
    Lamport, B.W.: A note on the confinement problem. Commun. ACM 16, 613–615 (1973)CrossRefGoogle Scholar
  2. 2.
    Millen J.: 20 years of covert channel modeling and analysis. In: Proceedings of 1999 IEEE symposium on security and privacy, pp 113–114. Oakland, CA, USA (1999)Google Scholar
  3. 3.
    Mazurczyk, W.: VoIP steganography and its detection—a survey. ACM Comput. Surv. 46, 1–20 (2013)CrossRefGoogle Scholar
  4. 4.
    Wendzel, S., Keller, J.: Systematic engineering of control protocols for covert channels. In: International Conference on Commun. Multimed. Secur., pp 131–144. Berlin, Germany (2012)Google Scholar
  5. 5.
    Wendzel, S., Keller, J.: Hidden and under control. Ann. Telecommun. 69, 417–430 (2014)CrossRefGoogle Scholar
  6. 6.
    Hamdaqa, M., Tahvildari, L.: ReLACK: a reliable VoIP steganography approach. In: 2011 Fifth International Conference on Secure Software Integration and Reliability Improvement, pp 189–197. Jeju Island, South Korea (2011)Google Scholar
  7. 7.
    Mazurczyk, W., Lubacz, J.: LACK—a VoIP steganographic method. Telecommun. Syst. 45, 153–163 (2010)CrossRefGoogle Scholar
  8. 8.
    Mazurczyk, W.: Lost audio packets steganography: the first practical evaluation. Secur. Commun. Netw. 5, 1394–1403 (2012)CrossRefGoogle Scholar
  9. 9.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Naumann, M., Wendzel, S., Mazurczyk, W., Keller, J.: Micro protocol engineering for unstructured carriers: on the embedding of steganographic control protocols into audio transmissions. Secur. Commun. Netw. 9(15), 2972–2985 (2016)CrossRefGoogle Scholar
  11. 11.
    Mazurczyk, W., Kotulski, Z.: New security and control protocol for VoIP based on steganography and digital watermarking. In: Proceedings of 5th International Conference on Computer Science-Research and Applications (IBIZA 2006), pp 9–11. Kazimierz Dolny, Poland (2006)Google Scholar
  12. 12.
    Forbes, C.R.: A new covert channel over RTP. MSc thesis, Rochester Institute of Technology (2009)Google Scholar
  13. 13.
    Takahashi, T., Lee, W.: An assessment of VoIP covert channel threats. In: Third International Conference on Security and Privacy in Communications Networks and the Workshops, pp 371–380. Nice, France (2007)Google Scholar
  14. 14.
    Xu, T., Yang, Z.: Simple and effective speech steganography in G.723.1 low-rate codes. International Conference on Wireless Communications & Signal Processing, pp 1–4. Nanjing, China (2009)Google Scholar
  15. 15.
    Tian, H., Zhou, K., Jiang, H., Huang, Y., Liu, J., Feng, D.: An adaptive steganography scheme for voice over IP. In: IEEE International Symposium on Circuits and Systems, pp 2922–2925. Taipei, Taiwan (2009)Google Scholar
  16. 16.
    Xu, E., Liu, B., Xu, L., Wei, Z., Zhao, B., Su, J.: Adaptive VoIP Steganography for Information Hiding within Network Audio Streams. In: 14th IEEE International Conference on Network-Based Information Systems, pp 612–617. Tirana, Albania (2011)Google Scholar
  17. 17.
    Wei, Z., Zhao, B., Liu, B., Su, J., Xu, L., Xu, L.: A novel steganography approach for voice over IP. Ambient Intell. Humaniz. Comput. 5(4), 601–610 (2014)CrossRefGoogle Scholar
  18. 18.
    Miao, R., Huang, Y.: An approach of covert communication based on the adaptive steganography scheme on Voice over IP. In: 2011 IEEE International Conference on Communications (ICC), pp 612–617. Kyoto, Japan (2011)Google Scholar
  19. 19.
    Liu, J., Zhou, K., Tian, H.: Least-significant-digit steganography in low bitrate speech. In: IEEE International Conference on Communications, pp 1133–1137. Ottawa, ON, Canada (2012)Google Scholar
  20. 20.
    Tian, H., Jiang, H., Zhou, K., Feng, D.: Adaptive partial-matching steganography for voice over IP using triple M sequences. Comput. Commun. 34(2011), 2236–2247 (2011)CrossRefGoogle Scholar
  21. 21.
    Tian, H., Qin, J., Guo, S., Huang, Y., Liu, J., Wang, T., Chen, Y., Cai, Y.: Improved adaptive partial-matching steganography for Voice over IP. Comput. Commun. 70(2015), 95–108 (2015)CrossRefGoogle Scholar
  22. 22.
    Zhou, K., Liu, J., Tian, H., Li, C.: State-based steganography in low bit rate speech. In: 20th ACM International Conference on Multimedia, pp 1109–1112. Nara, Japan (2012)Google Scholar
  23. 23.
    Jiang, Y., Zhang, L., Tang, S., Zhou, Z.: Real-time covert VoIP communications over smart grids by using AES-based audio steganography. In: IEEE International Conference on and IEEE Cyber, Physical and Social Computing, pp 2102–2107. Beijing, China (2013)Google Scholar
  24. 24.
    Jiang, Y., Tang, S.: An efficient and secure VoIP communication system with chaotic mapping and message digest. Multimed. Syst. (2017). CrossRefGoogle Scholar
  25. 25.
    Xiao, B., Huang, Y., Tang, S.: An approach to information hiding in low bit-rate speech stream. 2008 IEEE Global Telecommunications Conference, pp 1–5. New Orleans, LO, USA  (2008)Google Scholar
  26. 26.
    Huang, Y., Liu, C., Tang, S., Bai, S.: Steganography integration into a low-bit rate speech codec. IEEE Trans. Inf. Forensics Secur. 7(6), 1865–1875 (2012)CrossRefGoogle Scholar
  27. 27.
    Tian, H., Liu, J., Li, S.: Improving security of quantization-index-modulation steganography in low bit-rate speech streams. Multimed. Syst. 20(2), 143–154 (2014)CrossRefGoogle Scholar
  28. 28.
    Huang, Y., Tao, H., Xia, B., Chang, C.: Steganography in low-bit rate speech stream based quantization index modulation controlled by keys. Sci. China Technol. Sci. 60(10), 1585–1596 (2017)CrossRefGoogle Scholar
  29. 29.
    Mazurczyk, W., Szaga, P., Szczypiorski, K.: Using transcoding for hidden communication in IP telephony. Multimed. Tools Appl. 70(3), 2139–2165 (2014)CrossRefGoogle Scholar
  30. 30.
    Qin, J., Tian, H., Huang, Y., Liu, J., Chen, Y., Wang, T., Cai, Y., Wang, X.A.: An Efficient VoIP steganography based on random binary matrix. In: 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp 462–465.  Krakow, Poland (2015)Google Scholar
  31. 31.
    Li, F., Li, B., Peng, L., Chen, W., Zheng, L., Xu, K.: A steganographic method based on high bit rates speech codec of G.723.1. In: Cloud Computing and Security, pp 312–322. Haikou, China (2018)CrossRefGoogle Scholar
  32. 32.
    Kohls, K., Holz, T., Kolossa, D., Popper, C.: SkypeLine: Robust Hidden Data Transmission for VoIP. 11th ACM on Asia Conference on Computer and Communication Security, pp 877–888. Haikou, China (2016)Google Scholar
  33. 33.
    Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer VoIP calls on the internet. 12th ACM Conference on Computer and Communications Security (CCS ‘05), pp 81–91 (2005)Google Scholar
  34. 34.
    Chen, S., Wang, X., Jajodia, S.: on the anonymity and traceability of peer-to-peer VoIP calls. IEEE Netw. 20, 32–37 (2006)CrossRefGoogle Scholar
  35. 35.
    Wendzel, S., Keller, J.: Low-attention forwarding for mobile network covert channels. In: Communication and Multimedia Security, pp 122–133. Xi'an, China (2011)CrossRefGoogle Scholar
  36. 36.
    Stodle, D.: Ping tunnel-for those times when everything else is blocked. Accessed 02 Feb 2018
  37. 37.
    Ray, B., Mishra, S.: A protocol for building secure and reliable covert channel. In: Sixth Annual Conference on Privacy, Security and Trust, pp 246–253. Fredericton, NB, Canada  (2008)Google Scholar
  38. 38.
    Nain, A., Rajalakshmi, P.: A reliable covert channel over IEEE 802.15.4 using steganography. In: Proceedings of 3rd World Forum on Internet of Things, pp 1–6. Reston, VA, USA (2016)Google Scholar
  39. 39.
    Trabelsi, Z., Jawhar, I.: Covert file transfer protocol based on the ip record route option. J. Inf. Assur. Secur. 5(1), 64–73 (2010)Google Scholar
  40. 40.
    Golzar, A.: Reliable and real-time VoIP steganography. MSc thesis, University of Isfahan (In Persian) (2015)Google Scholar
  41. 41.
    Lu, C.-S.: Multimedia Security: Steganography and Digital Watermarking Techniques for Protection of Intellectual Property, pp. 231–247. Idea Group Publishing, Hershey (2005)CrossRefGoogle Scholar
  42. 42.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM J. Appl. Math. 8, 300–304 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information Technology EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations