Joint optimization of routing and VM resource allocation for multimedia cloud

  • Wenqiang Gong
  • Jinyao YanEmail author
  • Xiaoming Nan
  • Yun Tie
Regular Paper


With the development of cloud computing, cloud data centers provide powerful platforms for multimedia services. Still, QoS routing and resource allocation are two main challenges to optimize the multimedia services. The QoS routing affects the transmission time, while the resource allocation determines the resource utilization in cloud. In this paper, we introduce a cloud network model. Based on the model, we analyze the transmission delay among data centers, and propose a QoS-SPA routing algorithm. Furthermore, we study the optimal VM allocation problem with the objective to minimize the resource cost subject to the network transmission delay among data centers. As the optimization problem is NP-hard, we propose an efficient heuristic, price-performance ratio-based heuristic algorithm (PPR-HA), to achieve a sub-optimal solution. The extensive experimental results demonstrate that joint optimization of routing and VM with QoS-SPA and PPR-HA can effectively reduce the transmission delay among data centers and improve the resource utilization in cloud.


Multimedia cloud Cloud network model QoS routing Resource allocation Optimization algorithm 



We thank anonymous reviewers for their valuable feedback and comments.


The research was funded by National Natural Science Foundation of China (Grant nos. 61631016 and 61472389).

Supplementary material

530_2019_611_MOESM1_ESM.doc (147 kb)
Supplementary material 1 (doc 147 KB)


  1. 1.
    Zhu, W., Luo, C., Wang, J., Li, S.: Multimedia cloud computing. Signal Process. Mag. IEEE 28(3), 59–69 (2011)CrossRefGoogle Scholar
  2. 2.
    Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud computing: distributed internet computing for it and scientific research. Internet Comput. IEEE 13(5), 10–13 (2009)CrossRefGoogle Scholar
  3. 3.
    Manvi, S.S., Shyam, G.K.: Resource management for infrastructure as a service (IAAS) in cloud computing: a survey. J. Netw. Comput. Appl. 41(1), 424–440 (2014)CrossRefGoogle Scholar
  4. 4.
    Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection: state-of-the-art and future research directions. J. Netw. Comput. Appl. 45(10), 134–150 (2014)CrossRefGoogle Scholar
  5. 5.
    Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of np-Completeness. WH Freeman & Co., San Francisco (1979)zbMATHGoogle Scholar
  6. 6.
    Zhang, H., Chen, K., Bai, W., Han, D., Tian, C., Wang, H., Guan, H., Zhang, M.: Guaranteeing deadlines for inter-datacenter transfers. IEEE/ACM Trans. Network. PP(99), 1–17 (2017)Google Scholar
  7. 7.
    Lin, B., Guo, W., Lin, X.: Online optimization scheduling for scientific workflows with deadline constraint on hybrid clouds. Concurr. Comput. Pract. Exp. 28(11), 3079–3095 (2016)CrossRefGoogle Scholar
  8. 8.
    Lin, S.C., Akyildiz, I.F., Wang, P., Luo, M.: Qos-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. IEEE International Conference on Services Computing, pp. 25–33 (2016)Google Scholar
  9. 9.
    Wang, P., Lin, S.C., Luo, M.: A framework for qos-aware traffic classification using semi-supervised machine learning in SDNS. IEEE International Conference on Services Computing, pp. 760–765 (2016)Google Scholar
  10. 10.
    Vijay, U., Awasthi, L.K.: Scope of cloud computing for multimedia application. In: Proceedings of International Conference on Internet Computing and Information Communications, pp. 219–223, Springer (2014)Google Scholar
  11. 11.
    Liu, Y., Niu, D., Li, B.: Delay-optimized video traffic routing in software-defined interdatacenter networks. IEEE Trans. Multimed 18(5), 865–878 (2016)CrossRefGoogle Scholar
  12. 12.
    Nan, X., He, Y., Guan, L.: Optimal resource allocation for multimedia cloud based on queuing model. In: Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on, pp. 1–6, IEEE (2011)Google Scholar
  13. 13.
    Wen, H., Hai-ying, Z., Chuang, L., Yang, Y.: Effective load balancing for cloud-based multimedia system. In: Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on, vol. 1, pp. 165–168, IEEE (2011)Google Scholar
  14. 14.
    Nan, X., He, Y., Guan, L.: Optimal resource allocation for multimedia cloud in priority service scheme. In: Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, pp. 1111–1114, IEEE (2012)Google Scholar
  15. 15.
    Nan, X., He, Y., Guan, L.: Queueing model based resource optimization for multimedia cloud. J. Vis. Commun. Image Represent. 25(5), 928–942 (2014)CrossRefGoogle Scholar
  16. 16.
    Weingerrtner, R., Brerscher, G.B., Westphall, C.B.: Cloud resource management: a survey on forecasting and profiling models. J. Netw. Comput. Appl. 47, 99–106 (2015)CrossRefGoogle Scholar
  17. 17.
    Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S., Coady, Y.: Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, pp. 91–98, IEEE (2010)Google Scholar
  18. 18.
    Mareschal, B.: Aide à la décision multicritère: développements récents des méthodes promethee. Cahiers Cent. Rech. Opér. 29(3–4), 175–214 (1987)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wu, Y., Zhang, Z., Wu, C., Guo, C., Li, Z., Lau, F.C.M.: Orchestrating bulk data transfers across geo-distributed datacenters. IEEE Trans. Cloud Comput. PP(99), 1–1 (2017)CrossRefGoogle Scholar
  20. 20.
    Tang, J., Tay, W.P., Wen, Y.: Dynamic request redirection and elastic service scaling in cloud-centric media networks. IEEE Trans. Multimed. 16(5), 1434–1445 (2014)CrossRefGoogle Scholar
  21. 21.
    Gao, G., Wen, Y., Zhang, W., Hu, H.: Cost-efficient and QOS-aware content management in media cloud: implementation and evaluation. In: IEEE International Conference on Communications (2015)Google Scholar
  22. 22.
    Wenqiang Gong, J.Y., Chen, Z.: Optimal routing and resource allocation for multimedia cloud computing. In: Heterogeneous Networking for Quality, Reliability, Security and Robustness (Qshine),2014 10th International Conference on, pp. 249–254, IEEE (2014)Google Scholar
  23. 23.
    Gong, W., Chen, Z., Yan, J., Qianjun, S.: An optimal VM resource allocation for near-client-datacenter for multimedia cloud. In: Ubiquitous and Future Networks (ICUFN), 2014 Sixth International Conf on, pp. 249–254, IEEE (2014)Google Scholar
  24. 24.
    Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: a study of infrastructure as a service (IAAS). Int. J. Eng. Inf. Technol. 2(1), 60–63 (2010)Google Scholar
  25. 25.
    Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M. et al.: B4: experience with a globally-deployed software defined wan. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 3–14, ACM (2013)Google Scholar
  26. 26.
    Torkestani, J.A.: A distributed resource discovery algorithm for p2p grids. J. Netw. Comput. Appl. 35(6), 2028–2036 (2012)CrossRefGoogle Scholar
  27. 27.
    Ramaswamy, R., Weng, N., Wolf, T.: Characterizing network processing delay. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, vol. 3, pp. 1629–1634, IEEE (2004)Google Scholar
  28. 28.
    Padhye, J., Widmer, J.: TCP friendly rate control (TFRC): protocol specification (2003)Google Scholar
  29. 29.
    Yoo, M., Qiao, C., Dixit, S.: Qos performance of optical burst switching in ip-over-WDM networks. Sel. Areas Commun. IEEE J. 18(10), 2062–2071 (2000)CrossRefGoogle Scholar
  30. 30.
    Mooney, P., Winstanley, A.: An evolutionary algorithm for multicriteria path optimization problems. Int. J. Geogr. Inf. Sci. 20(4), 401–423 (2006)CrossRefGoogle Scholar
  31. 31.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows—Theory, Algorithms and Applications (2015)Google Scholar
  32. 32.
    Sahni, S., Rao, N., Ranka, S., Li, Y., Jung, E.-S., Kamath, N.: Bandwidth scheduling and path computation algorithms for connection-oriented networks. In: Networking, 2007. ICN’07. Sixth International Conference on, pp. 47–47, IEEE (2007)Google Scholar
  33. 33.
  34. 34.
    Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid IAAS clouds for deadline constrained workloads. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, pp. 228–235, IEEE (2010)Google Scholar
  35. 35.
    Reh, F.J.: Pareto’s principle-the 80–20 rule. Bus. Credit N Y Col. MD- 107(7), 76 (2005)Google Scholar
  36. 36.
    Broido, A., Hyun, Y., Gao, R. et al.: Their share: diversity and disparity in IP traffic. In: International Workshop on Passive and Active Network Measurement, pp. 113–125, Springer (2004)Google Scholar
  37. 37.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  38. 38.
    Amazon, E.: Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute Cloud (Amazon EC2) (2010)Google Scholar
  39. 39.
    Appenzeller, G., Keslassy, I., McKeown, N.: Sizing Router Buffers, vol. 34. ACM, New York (2004)Google Scholar
  40. 40.
    Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M.: B4-experience with a globally-deployed software defined wan. Acm Sigcomm Comput. Commun. Rev. 43(4), 3–14 (2013)CrossRefGoogle Scholar
  41. 41.
    Goudreau, M.W., Giles, C.L.: Routing in random multistage interconnections networks: comparing exhaustive search, greedy and neural network approaches. Int. J. Neural Syst. 3(02), 125–142 (1992)CrossRefGoogle Scholar
  42. 42.
    Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm. In: ACM SIGCOMM Computer Communication Review, vol. 19, pp. 1–12, ACM (1989)Google Scholar
  43. 43.
    Branco, R.M.: Software lingo 6.1 (2012)Google Scholar
  44. 44.
    Schmid, U., Blieberger, J.: Some investigations on fcfs scheduling in hard real time applications. J. Comput. Syst. Sci. 45(3), 493–512 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zheng, Z., Wang, R., Zhong, H., Zhang, X.: An approach for cloud resource scheduling based on parallel genetic algorithm. In: Computer Research and Development (ICCRD), 2011 3rd International Conference on, vol. 2, pp. 444–447, IEEE (2011)Google Scholar
  46. 46.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The School of Information EngineeringCommunication University of ChinaBeijingChina
  2. 2.The Key Laboratory of Media Audio and Video (Ministry of Education)Communication University of ChinaBeijingChina
  3. 3.The Department of Electrical and Computer EngineeringRyerson UniversityTorontoCanada
  4. 4.The Zhengzhou UniversityHenanChina

Personalised recommendations