Visual node prediction for visual tracking

  • Heng Yuan
  • Wen-Tao JiangEmail author
  • Wan-Jun Liu
  • Sheng-Chong Zhang
Regular Paper


A novel visual tracking algorithm based on visual node (VN) prediction is proposed in this paper. First, we count the distribution area and gray levels of the larger probability density in the VN. Then, all the frequencies of the VN are calculated, of which the weaker frequency gradient is removed by filtration. The stronger frequency gradient of the VN is reserved. Finally, we estimate the optimal object position by maximizing the likelihood of node clusters, which are formed by VNs. Extensive experiments show that the proposed approach has good adaptability to variable-structure tracking and outperforms the state-of-the-art trackers.


Visual node Visual node prediction Visual node frequency Node balance Node cluster Object tracking 



Heng Yuan, Wen-Tao Jiang, and Wan-Jun Liu are supported by the National Natural Science Foundation of the Republic of China under Grant 61601213 and NSF of Liaoning province under Grant 20170540426 and Liaoning province education department project under Grant LJ2017QL034, LJYL049. Sheng-Chong Zhang is supported by the China People’s Liberation Army weapons and equipment fund under Grant 61421070101162107002.

Supplementary material

530_2019_603_MOESM1_ESM.wmv (5.2 mb)
Supplementary material 1 (WMV 5349 KB)
530_2019_603_MOESM2_ESM.wmv (2.5 mb)
Supplementary material 2 (WMV 2521 KB)
530_2019_603_MOESM3_ESM.wmv (2.9 mb)
Supplementary material 3 (WMV 2942 KB)

Supplementary material 4 (WMV 5700 KB)

Supplementary material 5 (WMV 1200 KB)

Supplementary material 6 (WMV 6279 KB)


  1. 1.
    Marco, P., Radu, T., Tinne, T., et al.: An elastic deformation field model for object detection and tracking. Int. J. Comput. Vis. 111(2), 137–152 (2015)CrossRefGoogle Scholar
  2. 2.
    Christophe, G., Séverine, D.: Combinatorial resampling particle filter: an effective and efficient method for articulated object tracking. Int. J. Comput. Vis. 112(3), 255–284 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Rapuru, M., Kakanuru, S., Venugopal, P., et al.: Correlation based tracker level fusion for robust visual tracking. IEEE Trans. Image Process. 26(10), 4832–4842 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhang, K., Li, X., Song, H., et al.: Visual tracking using spatio-temporally nonlocally regularized correlation filter. Pattern Recogn. 83, 185–195 (2018)CrossRefGoogle Scholar
  5. 5.
    Zhang, K., Liu, Q., Yang, J., et al.: Visual tracking via boolean map representations. Pattern Recogn. 81, 147–160 (2018)CrossRefGoogle Scholar
  6. 6.
    Li, C., Cheng, H., Hu, S., et al: Learning collaborative sparse representation for grayscale-thermal tracking. IEEE Trans. Image Process. 25(12), 5743–5756 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, C., Lin, L., Zuo, W., et al.: Visual tracking via dynamic graph learning. IEEE Trans. Pattern Anal. Mach. Intell. (2018). Google Scholar
  8. 8.
    Zhang, K., Liu, Q., Wu, Y., et al.: Robust visual tracking via convolutional networks without training. IEEE Trans. Image Process. 25(4), 1779–1792 (2016)MathSciNetGoogle Scholar
  9. 9.
    Yang, J., Zhang, K., Liu, Q.: Robust object tracking by online Fisher discrimination boosting feature selection. Comput. Vis. Image Underst. 153, 100–108 (2016)CrossRefGoogle Scholar
  10. 10.
    Chen, W., Zhang, K., Liu, Q.: Robust visual tracking via patch based Kernel correlation filters with adaptive multiple feature ensemble. Neurocomputing 214, 607–617 (2016)CrossRefGoogle Scholar
  11. 11.
    Song, H., Zheng, Y., Zhang, K.: Robust visual tracking via self-similarity learning. Electron. Lett. 53(1), 20–22 (2016)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Li, C., Luo, B., et al.: SINT++: robust visual tracking via adversarial positive instance generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4864–4873 (2018)Google Scholar
  13. 13.
    Dominik, A.K.: BoBoT—Bonn benchmark on tracking. (2010). Accessed 1 Mar 2017
  14. 14.
    Choi, J., Chang, H.J., Jeong, J., et al.: Visual tracking using attention-modulated disintegration and integration. In: Computer Vision and Pattern Recognition. IEEE, pp. 4321–4330 (2016)Google Scholar
  15. 15.
    Duffner, S., Garcia, C.: Fast pixelwise adaptive visual tracking of non-rigid objects. IEEE Trans. Image Process. 26(5), 2368–2380 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kwon, J., Lee, K.M.: Adaptive visual tracking with minimum uncertainty gap estimation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 18–31 (2017)CrossRefGoogle Scholar
  17. 17.
    Danelljan, M., Häger, G., Khan, F.S., et al.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)CrossRefGoogle Scholar
  18. 18.
    Bertinetto, L., Valmadre, J., Golodetz, S., et al.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Heng Yuan
    • 1
  • Wen-Tao Jiang
    • 1
    Email author
  • Wan-Jun Liu
    • 1
  • Sheng-Chong Zhang
    • 2
  1. 1.Centre for Image and Visual Information Calculating ResearchLiaoning Technical UniversityHuludaoChina
  2. 2.Key Laboratory of Electro-optical Information Control and Security TechnologyChina Electronic Technology CorporationTianjinChina

Personalised recommendations