Advertisement

An app usage recommender system: improving prediction accuracy for both warm and cold start users

  • Di Han
  • Jianqing LiEmail author
  • Wenting Li
  • Ruibin Liu
  • Hai Chen
Special Issue Paper
  • 28 Downloads

Abstract

It is becoming increasingly difficult to find a particular app on a smartphone due to the increasing number of apps installed. Consequently, it is important to be able to quickly and accurately predict the next app to be used. Two problems arise in predicting next-app usage from the app usage history. One is that some algorithms do not consider the increasing amount of training data available over time, which causes the prediction accuracy to decrease over time. The other is that although some algorithms do consider the aggregation of training data over time, they rebuild their models using all historical data once the amount of new data has reached a certain limit, thus greatly increasing the remodeling time. To reduce the remodeling time, we utilize an modified incremental k-nearest neighbours (IkNN) algorithm to implement a recommender system called Predictor. When the IkNN is used for predicting next-app usage, a new problem is found. When modeling the training data, the classification accuracy decreases as the number of app features increases. After studying the relationships among the contextual features of apps, we design a cluster effective value (CEV), which can compensate for the error induced by multidimensional features, to improve the classification accuracy. It is shown that the IkNN algorithm with the CEV achieves a higher and more stable prediction accuracy compared with that of the algorithm without the CEV. Furthermore, we proposed a the Cold Start strategy: an efficient dynamic collaborative filtering fusion algorithm that provides app Cold Start prediction. Large-scale experiments show that Predictor offers a reduced remodeling time and an improved prediction accuracy.

Keywords

App usage prediction Recommender system Incremental machine learning Collaborative filtering Fusion recommendation 

Notes

References

  1. 1.
    Baezayates, R., Jiang, D., Silvestri, F., Harrison, B.: Predicting the next app that you are going to use. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 285–294, ACM (2015)Google Scholar
  2. 2.
    Mitra, P., Murthy, C.A., Pal, S.K.: Density-based multiscale data condensation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 734–747 (2002)CrossRefGoogle Scholar
  3. 3.
    Meng, W., Li, W., Kwok, L.F.: Design of intelligent knn-based alarm filter using knowledge-based alert verification in intrusion detection. Secur. Commun. Netw. 8(18), 3883–3895 (2015)CrossRefGoogle Scholar
  4. 4.
    Pandya, D.H., Upadhyay, S.H., Harsha, S.P.: Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using apf-knn. Expert Syst. Appl. 40(10), 4137–4145 (2013)CrossRefGoogle Scholar
  5. 5.
    Zou, X., Zhang, W., Li, S., Pan, G.: Prophet: what app you wish to use next. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 167–170, ACM (2013)Google Scholar
  6. 6.
    Parate, A., Chu, D., Ganesan, D., Marlin, B. M.: Practical prediction and prefetch for faster access to applications on mobile phones. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 275–284, ACM (2013)Google Scholar
  7. 7.
    Krishnaswamy, S., Gama, J., Gaber, M.M.: Mobile data stream mining: from algorithms to applications. In: IEEE International Conference on Mobile Data Management, pp. 360–363, IEEE (2012)Google Scholar
  8. 8.
    Liao, Z.X., Lei, P.R., Shen, T.J., Li, S.C., Peng, W.C.: Mining temporal profiles of mobile applications for usage prediction. In: IEEE International Conference on Data Mining Workshops, pp. 890–893, IEEE (2012)Google Scholar
  9. 9.
    Natarajan, N., Shin, D., Dhillon, I.S.: Which app will you use next? Collaborative filtering with interactional context. In: ACM Conference on Recommender Systems, pp. 201–208, ACM (2013)Google Scholar
  10. 10.
    Xu, Y., Lin, M., Lu, H., Cardone, G., Lane, N., Chen, Z., Campbell, A., Choudhury, T.: Preference, context and communities:a multi-faceted approach to predicting smartphone app usage patterns. In: Proceedings of the 2013 International Symposium on Wearable Computers, pp. 69–76, IEEE (2013)Google Scholar
  11. 11.
    Yan, T., Chu, D., Ganesan, D., Kansal, A., Liu, J.: Fast app launching for mobile devices using predictive user context. In: International Conference on Mobile Systems, Applications, and Services, pp. 113–126, ACM (2012)Google Scholar
  12. 12.
    Huang, K., Zhang, C., Ma, X., Chen, G.: Predicting mobile application usage using contextual information. In: ACM Conference on Ubiquitous Computing, pp. 1059–1065, ACM (2012)Google Scholar
  13. 13.
    Xiang, Z., Deng, S., Liu, S., Cao, B., Yin, J.: Camer: a context-aware mobile service recommendation system. In: IEEE 23rd International conference on web services (ICWS), San Francisco, CA, 27 June–2 July 2016, pp. 292–299 (2016).  https://doi.org/10.1109/ICWS.2016.45
  14. 14.
    Cao, H., Lin, M.: Mining smartphone data for app usage prediction and recommendations: a survey. Pervasive Mob. Comput. 37, 1–22 (2017)CrossRefGoogle Scholar
  15. 15.
    Pan, W., Aharony, N., Pentland, A.: Composite social network for predicting mobile apps installation. In: AAAI’11 Proceedings of the twenty-fifth AAAI conference on artificial intelligence, San Francisco, California, 7–11 Aug 2011, vol. 7, pp 821–827 (2011)Google Scholar
  16. 16.
    Keshet, J., Kariv, A., Dagan, A., Volk, D., Simhon, J.: Context-based prediction of app usage. arXiv preprint arXiv:1512.07851 (2015)
  17. 17.
    Zhang, C., Ding, X., Chen, G., Huang, K., Ma, X., Yan, B.: Nihao: a predictive smartphone application launcher. In: International Conference on Mobile Computing, Applications, and Services, pp. 294–313, Springer (2012)Google Scholar
  18. 18.
    Amal, M., Riadh, B.A.: Survey of nearest neighbor condensing techniques. Int. J. Adv. Comput. Sci. Appl. 2(11), 59–64 (2011)Google Scholar
  19. 19.
    Liang, T., Xu, X., Xiao, P.: A new image classification method based on modified condensed nearest neighbor and convolutional neural networks. Pattern Recogn. Lett. 94, 105–111 (2017)CrossRefGoogle Scholar
  20. 20.
    Kumar, R.R., Viswanath, P., Bindu, C.: Nearest neighbor classifiers: a review. Int. J. Comput. Intell. Res. 13(2), 303–311 (2017)Google Scholar
  21. 21.
    Lin, J., Sugiyama, K., Kan, M.-Y., Chua, T.-S.: Addressing cold-start in app recommendation: latent user models constructed from twitter followers. In: Proceedings of the 36th international ACM SIGIR Conference on Research and Development in Information Eetrieval, pp. 283–292, ACM (2013)Google Scholar
  22. 22.
    Liu, N.N., Meng, X., Liu, C., Yang, Q.: Wisdom of the better few: cold start recommendation via representative based rating elicitation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 37–44, ACM (2011)Google Scholar
  23. 23.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  24. 24.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Tang, J., Zhang, X., Xue, X.: Addressing cold start in recommender systems: a semi-supervised co-training algorithm. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 73–82, ACM (2014)Google Scholar
  26. 26.
    He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 173–182 (2017)Google Scholar
  27. 27.
    He, X., He, Z., Song, J., Liu, Z., Jiang, Y.-G., Chua, T.-S.: Nais: neural attentive item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30(12), 2354–2366 (2018).  https://doi.org/10.1109/TKDE.2018.2831682 CrossRefGoogle Scholar
  28. 28.
    Wang, X., He, X., Feng, F., Nie, L., Chua, T.-S.: Tem: tree-enhanced embedding model for explainable recommendation. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1543–1552 (2018)Google Scholar
  29. 29.
    Zhang, H., Shen, F., Liu, W., He, X., Luan, H., Chua, T.-S.: Discrete collaborative filtering. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334, ACM (2016)Google Scholar
  30. 30.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pp. 452–461, AUAI Press (2009)Google Scholar
  31. 31.
    Galashov, A.E., Kel’Manov, A.V.: A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets. Autom. Remote Control 75(4), 595–606 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommendation. Proc. VLDB Endowment 5(9), 896–907 (2012)CrossRefGoogle Scholar
  33. 33.
    Kumar, K.M., Reddy, A.R.M.: A fast dbscan clustering algorithm by accelerating neighbor searching using groups method. Pattern Recogn. 58, 39–48 (2016)CrossRefGoogle Scholar
  34. 34.
    Ye, Y., Chiang, C.C.: A parallel apriori algorithm for frequent itemsets mining. In: International Conference on Software Engineering Research, Management and Applications, pp. 87–94 (2006)Google Scholar
  35. 35.
    Liu, R., Cao, J., Zhang, K., Gao, W., Yang, L., Liang, J., Yu, R.: Understanding mobile users’ privacy expectations: a recommendation-based method through crowdsourcing. IEEE Trans. Serv. Comput. (2016).  https://doi.org/10.1109/TSC.2016.2636285 CrossRefGoogle Scholar
  36. 36.
    He, Y.L., Wei, C.H., Long, H., Ashfaq, R.A.R., Huang, J.Z.: Random weight network-based fuzzy nonlinear regression for trapezoidal fuzzy number data. Appl. Soft Comput. 70, 959–979 (2017).  https://doi.org/10.1016/j.asoc.2017.08.006 CrossRefGoogle Scholar
  37. 37.
    Laurila, J.K., Gatica-Perez, D., Aad, I., Bornet, O., Do, T.-M.-T., Dousse, O., Eberle, J., Miettinen, M., et al.: The mobile data challenge: big data for mobile computing research. In: Pervasive Computing, no. EPFL-CONF-192489 (2012)Google Scholar
  38. 38.
    Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., Cantador, I.: Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User Adapt. Interact. 26(2–3), 221–255 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Di Han
    • 1
  • Jianqing Li
    • 1
    Email author
  • Wenting Li
    • 2
  • Ruibin Liu
    • 1
  • Hai Chen
    • 1
  1. 1.Faculty of Information TechnologyMacau University of Science and TechnologyTaipaChina
  2. 2.Computer and Information Engineering CollegeGuizhou University of CommerceGuiyangChina

Personalised recommendations