General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II
- 32 Downloads
Abstract
For convex bodies K in \(\mathbb {R}^n\) containing the origin in their interiors, the general dual volume and the general dual Orlicz curvature measure \(\widetilde{C}_{G, \psi }(K, \cdot )\) were recently introduced for certain classes of functions G and \(\psi \). We extend these concepts to more general functions G and to compact convex sets K containing the origin (but not necessarily in their interiors). Some basic properties of the general dual volume and of the dual Orlicz curvature measure are provided which are required to study a Minkowski-type problem for the dual Orlicz curvature measure. The Minkowski problem asks to characterize Borel measures \(\mu \) on the unit sphere for which there is a convex body K in \(\mathbb {R}^n\) containing the origin such that \(\mu \) equals \(\widetilde{C}_{G, \psi }(K, \cdot )\), up to a constant. A major step in the analysis concerns discrete measures \(\mu \), for which we prove the existence of convex polytopes containing the origin in their interiors solving the Minkowski problem. Under mild conditions on G and \(\psi \), solutions are obtained for general measures by an approximation argument. Our results generalize several previous works and provide more precise information about the solutions of the Minkowski problem when \(\mu \) is discrete or even.
Mathematics Subject Classification
Primary: 52A20 52A30 secondary: 52A39 52A40Notes
References
- 1.Böröczky, K.J., Fodor, F.: The \(L_p\) dual Minkowski problem for \(p>1\) and \(q>0\). J. Differ. Equ. 266, 7980–8033 (2019)CrossRefGoogle Scholar
- 2.Böröczky, K.J., Fodor, F., Hug, D.: Intrinsic volumes of random polytopes with vertices on the boundary of a convex body. Trans. Am. Math. Soc. 365, 785–809 (2013)MathSciNetCrossRefGoogle Scholar
- 3.Böröczky, K.J., Hegedűs, P., Zhu, G.: On the discrete logarithmic Minkowski problem. Int. Math. Res. Not. 1807–1838 (2016)MathSciNetCrossRefGoogle Scholar
- 4.Böröczky, K.J., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109, 411–429 (2018)MathSciNetCrossRefGoogle Scholar
- 5.Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013)MathSciNetCrossRefGoogle Scholar
- 6.Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The dual Minkowski problem for symmetric convex bodies arXiv:1703.06259
- 7.Chen, C., Huang, Y., Zhao, Y.: Smooth solutions to the \(L_p\) dual Minkowski problem. Math. Ann. 373, 953–976 (2019)MathSciNetCrossRefGoogle Scholar
- 8.Chen, S., Li, Q.: On the planar dual Minkowski problem. Adv. Math. 333, 87–117 (2018)MathSciNetCrossRefGoogle Scholar
- 9.Chen, S., Li, Q., Zhu, G.: On the \(L_p\) Monge–Ampère equation. J. Differ. Equ. 263, 4997–5011 (2017)CrossRefGoogle Scholar
- 10.Chen, S., Li, Q., Zhu, G.: The logarithmic Minkowski problem for non-symmetric measures. Trans. Am. Math. Soc. 371, 2623–2641 (2019)MathSciNetCrossRefGoogle Scholar
- 11.Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)MathSciNetCrossRefGoogle Scholar
- 12.Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
- 13.Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)MathSciNetCrossRefGoogle Scholar
- 14.Gardner, R.J., Hug, D., Weil, W., Xing, S., Ye, D.: General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem I. Calc. Var. Partial Differ. Equ. 58, 12 (2019)MathSciNetCrossRefGoogle Scholar
- 15.Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)zbMATHGoogle Scholar
- 16.Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)MathSciNetCrossRefGoogle Scholar
- 17.Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)MathSciNetCrossRefGoogle Scholar
- 18.Hong, H., Ye, D., Zhang, N.: The \(p\)-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems. Calc. Var. Partial Differ. Equ. 57, 5 (2018)MathSciNetCrossRefGoogle Scholar
- 19.Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
- 20.Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discret. Comput. Geom. 48, 281–297 (2012)MathSciNetCrossRefGoogle Scholar
- 21.Huang, Y., Zhao, Y.: On the \(L_p\) dual Minkowski problem. Adv. Math. 332, 57–84 (2018)MathSciNetCrossRefGoogle Scholar
- 22.Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016)MathSciNetCrossRefGoogle Scholar
- 23.Hug, D.: Absolute continuity for curvature measures of convex sets I. Math. Nachr. 195, 139–158 (1998)MathSciNetCrossRefGoogle Scholar
- 24.Hug, D.: Absolute continuity for curvature measures of convex sets II. Math. Z 232, 437–485 (1999)MathSciNetCrossRefGoogle Scholar
- 25.Hug, D., Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem for polytopes. Discret. Comput. Geom. 33, 699–715 (2005)CrossRefGoogle Scholar
- 26.Jiang, Y., Wu, Y.: On the \(2\)-dimensional dual Minkowski problem. J. Differ. Equ. 263, 3230–3243 (2017)MathSciNetCrossRefGoogle Scholar
- 27.Li, A.: The generalization of Minkowski problems for polytopes. Geom. Dedic. 168, 245–264 (2014)MathSciNetCrossRefGoogle Scholar
- 28.Li, Q., Sheng, W., Wang, X.: Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J. Eur. Math. Soc. (JEMS). arXiv:1712.07774
- 29.Luo, X., Ye, D., Zhu, B.: On the polar Orlicz–Minkowski problems and the \(p\)-capacitary Orlicz–Petty bodies. Indiana Univ. Math. J. arXiv:1802.07777
- 30.Lutwak, E.: Dual mixed volumes. Pac. J. Math. 58, 531–538 (1975)MathSciNetCrossRefGoogle Scholar
- 31.Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)MathSciNetCrossRefGoogle Scholar
- 32.Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)MathSciNetCrossRefGoogle Scholar
- 33.Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_{p}\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)CrossRefGoogle Scholar
- 34.Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)CrossRefGoogle Scholar
- 35.Lutwak, E., Yang, D., Zhang, G.: \(L_p\) dual curvature measures. Adv. Math. 329, 85–132 (2018)MathSciNetCrossRefGoogle Scholar
- 36.Minkowski, H.: Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, (1897), 198–219. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, pp. 103–121Google Scholar
- 37.Minkowski, H.: Volumen und Oberfläche, Math. Ann. 57 (1903), 447–495. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, pp. 230–276Google Scholar
- 38.Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
- 39.Xing, S., Ye, D.: On the general dual Orlicz–Minkowski problem. Indiana Univ. Math. J. arXiv:1802.06331
- 40.Zhao, Y.: The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ. 56, 18 (2017)MathSciNetCrossRefGoogle Scholar
- 41.Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110, 543–572 (2018)MathSciNetCrossRefGoogle Scholar
- 42.Zhu, B., Hong, H., Ye, D.: The Orlicz–Petty bodies. Int. Math. Res. Not. 2018, 4356–4403 (2018)MathSciNetCrossRefGoogle Scholar
- 43.Zhu, B., Xing, S., Ye, D.: The dual Orlicz–Minkowski problem. J. Geom. Anal. 28, 3829–3855 (2018)MathSciNetCrossRefGoogle Scholar
- 44.Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)MathSciNetCrossRefGoogle Scholar