Affine isoperimetric inequalities for intersection mean ellipsoids

  • Jiaqi Hu
  • Ge XiongEmail author
  • Du Zou


A variational formula for Lutwak’s dual affine quermassintegrals \({\widetilde{\Lambda }}_{j}\) of convex bodies in \({\mathbb {R}}^n\) is established when \(1\le j\le n-1.\) Using new ellipsoids associated with the intersection functions of convex bodies, we prove several sharp affine isoperimetric inequalities.

Mathematics Subject Classification




Part of this work was done when we were visiting Chern Institute of Mathematics in 2017. We would like to thank Professors Zhang Weiping and Feng Huitao and the institute for their hospitality and financial support. We are grateful to the referee for many suggested improvements and for the thoughtful and careful reading given to the original draft of this paper.


  1. 1.
    Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Burago, Y., Zalgaller, V.: Geometric Inequalities. Springer, Berlin (1988)CrossRefGoogle Scholar
  3. 3.
    Dann, S., Paouris, G., Pivovarov, P.: Bounding marginal densities via affine isoperimetry. Proc. Lond. Math. Soc. 113, 140–162 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Furstenberg, H., Tzkoni, I.: Spherical harmonics and integral geometry. Isr. J. Math. 10, 327–338 (1971)CrossRefGoogle Scholar
  5. 5.
    Gardner, R.: Geometric Tomography. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  6. 6.
    Grinberg, E.: Isoperimetric inequalities and identities for \(k\)-dimensional cross-sections of convex bodies. Math. Ann. 291, 75–86 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)zbMATHGoogle Scholar
  8. 8.
    Hu, J., Xiong, G., Zou, D.: On mixed \(L_p\) John ellipsoids. Adv. Geom. 19, 297–312 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lutwak, E.: Selected affine isoperimetric inequalities. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 151–176. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  10. 10.
    Lutwak, E.: Mean dual and harmonic cross-sectional measures. Ann. Mat. Pura Appl. 119, 139–148 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lutwak, E., Yang, D., Zhang, G.: \(L_p\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)CrossRefGoogle Scholar
  15. 15.
    Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_{p}\). J. Differ. Geom. 68, 159–184 (2004)CrossRefGoogle Scholar
  16. 16.
    Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for isotropic measures. Am. J. Math. 129, 1711–1723 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lutwak, E., Yang, D., Zhang, G.: A volume inequality for polar bodies. J. Differ. Geom. 84, 163–178 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ren, D.: Topics in Integral Geometry. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  19. 19.
    Santaló, L.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  20. 20.
    Schneider, R.: Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  21. 21.
    Schuster, F., Weberndorfer, M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263–283 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xiong, G.: Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225, 3214–3228 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, G.: New affine isoperimetric inequalities. In: International Conference on Chinese Mathematicians (ICCM ), vol. 265, pp. 239–267 (2007)Google Scholar
  24. 24.
    Zou, D., Xiong, G.: Orlicz–John ellipsoids. Adv. Math. 265, 132–168 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zou, D., Xiong, G.: Orlicz–Legendre ellipsoids. J. Geom. Anal. 26, 2474–2502 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zou, D., Xiong, G.: New affine inequalities and projection mean ellipsoids. Calc. Var. Partial Differ. Equ. 58, 18 (2019). Art. 44MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiPeople’s Republic of China
  2. 2.School of Mathematical SciencesTongji UniversityShanghaiPeople’s Republic of China
  3. 3.Department of MathematicsWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations