Advertisement

Blow-up profile of neutron stars in the Hartree–Fock–Bogoliubov theory

  • Dinh-Thi NguyenEmail author
Article
  • 60 Downloads

Abstract

We consider the gravitational collapse for neutron stars in the Hartree–Fock–Bogoliubov theory. We prove that when the number particle becomes large and the gravitational constant is small such that the attractive interaction strength approaches the Chandrasekhar limit mass slowly, the minimizers develop a universal blow-up profile. It is given by the Lane–Emden solution.

Mathematics Subject Classification

81V17 35Q55 49J40 

Notes

Acknowledgements

The manuscript was completed when the author was visiting the Mittag–Leffler Institute for the semester program Spectral Methods in Mathematical Physics. The author would like to thank the organizers for their warm hospitality. He also thanks E. Lenzmann for helpful comments. The research received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868.

References

  1. 1.
    Aschbacher, W., Fröhlich, J., Graf, G., Schnee, K., Troyer, M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bach, V., Fröhlich, J., Jonsson, B.L.G.: Bogolubov–Hartree–Fock mean field theory for neutron stars and other systems with attractive interactions. J. Math. Phys. 50, 102102 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)CrossRefGoogle Scholar
  5. 5.
    Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fournais, S., Lewin, M., Solovej, J.P.: The semi-classical limit of large fermionic systems. Calc. Variations Partial Differ. Equ. 57, 105 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210, 261–318 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671–1726 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)CrossRefGoogle Scholar
  10. 10.
    Friesecke, G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Rational Mech. Anal. 169, 35–71 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fröhlich, J., Lenzmann, E.: Dynamical collapse of white dwarfs in Hartree- and Hartree–Fock theory. Commun. Math. Phys. 274, 737–750 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gadre, S.R., Bartolotti, L.J., Handy, N.C.: Bounds for Coulomb energies. J. Chem. Phys. 72, 1034–1038 (1980)CrossRefGoogle Scholar
  13. 13.
    Guo, Y., Zeng, X.: Ground states of pseudo-relativistic boson stars under the critical stellar mass. Ann. de l’Institut Henri Poincaré (C) Analyse Non Linéaire 34, 1611–1632 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hainzl, C.: On the static and dynamical collapse of white dwarfs, entropy and the quantum: Arizona school of analysis with applications, March 16–20. Univ. Arizona 529(2010), 189–202 (2009)MathSciNetGoogle Scholar
  15. 15.
    Hainzl, C., Lenzmann, E., Lewin, M., Schlein, B.: On blowup for time-dependent generalized Hartree–Fock equations. Ann. Henri Poincaré 11, 1023–1052 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hainzl, C., Schlein, B.: Stellar collapse in the time dependent Hartree–Fock approximation. Commun. Math. Phys. 287, 705–717 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Herbst, I.W.: Spectral theory of the operator \((p^{2}+m^{2})^{1/2}-Ze^{2}/r\). Commun. Math. Phys. 53, 285–294 (1977)CrossRefGoogle Scholar
  18. 18.
    Kato, T.: Perturbation Theory for Linear Operators, vol. 2. Springer, Berlin (1995)CrossRefGoogle Scholar
  19. 19.
    Lane, J.H.: On the theoretical temperature of the sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. Arts 50, 57–74 (1870)CrossRefGoogle Scholar
  20. 20.
    Lenzmann, E., Lewin, M.: Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152, 257–315 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lenzmann, E., Lewin, M.: On singularity formation for the \({L}^2\)-critical Boson star equation. Nonlinearity 24, 3515–3540 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, RI (2001)Google Scholar
  25. 25.
    Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1980)CrossRefGoogle Scholar
  26. 26.
    Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  27. 27.
    Lieb, E.H., Thirring, W.E.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. 155, 494–512 (1984)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lieb, E.H., Yau, H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. de l’Institut Henri Poincaré (C) Analyse Non Linéaire 1, 109–149 (1984)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. de l’Institut Henri Poincaré (C) Analyse Non Linéaire 1, 223–283 (1984)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equations with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nguyen, D.-T.: Blow-up profile of ground states for the critical boson star, arXiv preprint arXiv:1703.10324v1, (2017)
  34. 34.
    Nguyen, D.-T.: On blow-up profile of ground states of Boson stars with external potential. J. Stat. Phys. 169, 395–422 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nguyen, D.-T.: Blow-up profile of neutron stars in the Chandrasekhar theory. J. Math. Phys. 60, 071508 (2019)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Nguyen, D.-T.: Many-body blow-up profile of Boson stars with external potentials. Rev. Math. Phys. 31, 1950034 (2019)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Straumann, N.: General Relativity and Relativistic Astrophysics. Springer, Berlin (2012)Google Scholar
  38. 38.
    Thomas, L.H.: The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 23, 542–548 (1927)CrossRefGoogle Scholar
  39. 39.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, vol. 1. Wiley, New York (1972)Google Scholar
  40. 40.
    Yang, J., Yang, J.: Existence and mass concentration of pseudo-relativistic Hartree equation. J. Math. Phys. 58, 081501 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig–Maximilians–Universität München (LMU)MunichGermany
  2. 2.Munich Center for Quantum Science and Technology (MCQST)MunichGermany

Personalised recommendations