On global \(L^q\) estimates for systems with p-growth in rough domains

  • Miroslav Bulíček
  • Sun-Sig Byun
  • Petr Kaplický
  • Jehan Oh
  • Sebastian SchwarzacherEmail author


We study regularity results for nonlinear parabolic systems of p-Laplacian type with inhomogeneous boundary and initial data, with \(p\in (\frac{2n}{n+2},\infty )\). We show bounds on the gradient of solutions in the Lebesgue-spaces with arbitrary large integrability exponents and natural dependences on the right hand side and the boundary data. In particular, we provide a new proof of the global non-linear Calderón–Zygmund theory for such systems. This extends the global result of Bögelein (Calc Var Partial Differ Equ 51(3–4):555–596, 2014) to very rough domains and more general boundary values. Our method makes use of direct estimates on the solution minus its boundary values and hence is considerably shorter than the available higher integrability results. Technically interesting is the fact that our parabolic estimates have no scaling deficit with respect to the leading order term. Moreover, in the singular case, \(p\in (\frac{2n}{n+2},2]\), any scaling deficit can be omitted.

Mathematics Subject Classification

35K51 35K55 35B65 35A01 



The authors would like to thank the referee for the very valuable suggestions and comments which led to improvement of the paper. M. Bulíček’s and S. Schwarzacher’s work is supported by the project LL1202 financed by the Ministry of Education, Youth and Sports, Czech Republic and by the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (Math MAC). M. Bulíček, P. Kaplickýand S. Schwarzacher are members of the Nečas Center for Mathematical Modeling. S. Byun was supported by NRF-2017R1A2B2003877.


  1. 1.
    Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baroni, P., Lindfors, C.: The Cauchy–Dirichlet problem for a general class of parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(3), 593–624 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bögelein, V.: Global gradient bounds for the parabolic \(p\)-laplacian system. Proc. Lond. Math. Soc. 111(3), 633–680 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bögelein, V.: Global Calderón–Zygmund theory for nonlinear parabolic systems. Calc. Var. Partial Differ. Equ. 51(3–4), 555–596 (2014)zbMATHGoogle Scholar
  6. 6.
    Breit, D., Cianchi, A., Diening, L., Kuusi, T., Schwarzacher, S.: The \(p\)-Laplace system with right-hand side in divergence form: inner and up to the boundary pointwise estimates. Nonlinear Anal. 153, 200–212 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 53(14), 2671–2700 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Breit, D., Stroffolini, B., Verde, A.: Non-stationary flows of asymptotically Newtonian fluids. Commun. Contemp. Math. 20(2), 1750006 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bulíček, M., Diening, L., Schwarzacher, S.: Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems. Anal. PDE 9, 1115–1151 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bulíček, M., Schwarzacher, S.: Existence of very weak solutions to elliptic systems of \(p\)-Laplacian type. Calc. Var. Partial Differ. Equ. 55(3), 52 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Byun, S.-S., Oh, J.: Global Morrey regularity for asymptotically regular elliptic equations. Appl. Math. Lett. 76, 227–235 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Byun, S.-S., Oh, J., Wang, L.: Global Calderón–Zygmund theory for asymptotically regular nonlinear elliptic and parabolic equations. Int. Math. Res. Not. IMRN 17, 8289–8308 (2015)zbMATHGoogle Scholar
  13. 13.
    Byun, S.-S., Ok, J.: Nonlinear parabolic equations with variable exponent growth in nonsmooth domains. SIAM J. Math. Anal. 48(5), 3148–3190 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Byun, S.-S., Ok, J.: On \(W^{1,q(\cdot )}\)-estimates for elliptic equations of \(p(x)\)-Laplacian type. J. Math. Pures Appl. 106(3), 512–545 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Byun, S.-S., Palagachev, D.K.: Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains. Calc. Var. Partial Differ. Equ. 49(1–2), 37–76 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Byun, S.-S., Wang, L.: Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212(2), 797–818 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Byun, S.-S., Wang, L., Zhou, S.: Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250(1), 167–196 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)zbMATHGoogle Scholar
  20. 20.
    Colombo, M., Mingione, G.: Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270(4), 1416–1478 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)zbMATHGoogle Scholar
  22. 22.
    DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Diening, L., Ržička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(1), 1–46 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Diening, L., Scharle, T., Schwarzacher, S.: Regularity for parabolic systems of Uhlenbeck type with Orlicz growth. J. Math. Anal. Appl. 472(1), 46–60 (2019)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  26. 26.
    Iwaniec, T.: On \({L^p}\)-integrability in pde’s and quasiregular mappings for large exponents. Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica 7, 301–322 (1982)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Iwaniec, T.: Projections onto gradient fields and \(L^{p}\)-estimates for degenerated elliptic operators. Studia Math. 75(3), 293–312 (1983)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kinnunen, J., Zhou, S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Integr. Equ. 14(4), 475–492 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kuusi, T., Mingione, G.: New perturbation methods for nonlinear parabolic problems. J. Math. Pures Appl. 98(4), 390–427 (2012)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  32. 32.
    Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Mingione, G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6(2), 195–261 (2007)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. USA 50, 1038–1041 (1963)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Palagachev, D.K., Softova, L.G.: The Calderón–Zygmund property for quasilinear divergence form equations over Reifenberg flat domains. Nonlinear Anal. 74(5), 1721–1730 (2011)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Phuc, N.C.: Nonlinear muckenhoupt-wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997)zbMATHGoogle Scholar
  38. 38.
    Šverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99(24), 15269–15276 (2002)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138(3–4), 219–240 (1977)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ural’ceva, N .N.: Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222 (1968)MathSciNetGoogle Scholar
  41. 41.
    Zhang, J., Zheng, S.: Lorentz estimate for nonlinear parabolic obstacle problems with asymptotically regular nonlinearities. Nonlinear Anal. 134, 189–203 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miroslav Bulíček
    • 1
  • Sun-Sig Byun
    • 2
  • Petr Kaplický
    • 3
  • Jehan Oh
    • 4
  • Sebastian Schwarzacher
    • 3
    • 5
    Email author
  1. 1.Mathematical Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Department of Mathematical Sciences and Research Institute of MathematicsSeoul National UniversitySeoulKorea
  3. 3.Department of Mathematical Analysis, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  4. 4.Department of MathematicsKyungpook National UniversityDaeguKorea
  5. 5.Institute of Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations