Advertisement

Condensate solutions of the self-dual O(3) Maxwell–Chern–Simons–Higgs equations with symmetric vacua

  • Jongmin Han
  • Kyungwoo SongEmail author
Article
  • 2 Downloads

Abstract

We consider a semilinear elliptic system, called the self-dual O(3) Maxwell–Chern–Simons–Higgs equations, on a two-dimensional flat torus arising from the O(3) sigma gauge field model. The system has three important parameters \(\tau \in [0,1]\), \(\kappa >0\) and \(q>0\). We focus on the case of \(\tau =1\) which yields a different structure from that of \(0 \le \tau <1\). Then, we show that the system possesses a solution for a sufficiently small \(\kappa \) and a very large q on a torus. In the proof, we develop a new method in order to use the topological degree theory. We also prove the Chern–Simons limit for our solutions, i.e., the convergence of solutions as \(q \rightarrow \infty \).

Mathematics Subject Classification

35J61 35Q75 81T13 

Notes

Acknowledgements

The authors thank the referee for helpful suggestions and comments. The research of Jongmin Han was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2018R1D1A1B07042681), and the research of Kyungwoo Song was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1D1A1B03932448).

References

  1. 1.
    Arthur, K., Tchrakian, D., Yang, Y.: Topological and nontopological self-dual Chern–Simons solitons in a gauged \(O(3)\) \(\sigma \) model. Phys. Rev. D. 54, 5245–5258 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aubin, T.: Nonlinear Analysis on Manifolds: Monge Ampere Equations, Grundlehren der mathematischen Wissenschaften, vol. 252. Springer, New York (1982)CrossRefGoogle Scholar
  3. 3.
    Bartolucci, D., Lee, Y., Lin, C.-S., Onodera, M.: Asymptotic analysis of solutions to a gauged \(O(3)\) sigma model. Ann. Inst. Henri Poincare Nonlinear Anal. 32, 651–685 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bethuel, F., Brezis, H., Hélein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1, 123–148 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caffarelli, L., Yang, Y.: Vortex condensation in Chern–Simons–Higgs model: an existence theorem. Commun. Math. Phys. 168, 321–336 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chae, D., Kim, N.: Topological multivortex solutions of the self-dual Maxwell–Chern–Simons–Higgs system. J. Differ. Equ. 134, 154–182 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chae, D., Nam, H.-S.: On the condensate multivortex solutions of the self-dual Maxwell–Chern–Simons \(CP(1)\) model. Ann. Henri Poincaré 2, 887–906 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choe, K.: Multivortex solutions in the Chern–Simons gauged \(O(3)\) sigma model on a doubly periodic domain. J. Math. Anal. Appl. 421, 591–624 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Choe, K., Han, J.: Existence and properties of radial solutions in the self-dual Chern–Simons \(O(3)\) sigma model. J. Math. Phys. 52, 1–20 (2011). Article No. 082301Google Scholar
  10. 10.
    Choe, K., Han, J., Lin, C.-S.: Bubbling solutions for the Chern–Simons gauged \(O(3)\) sigma model in \({\mathbb{R}}^{2}\). Discrete Cont. Dyn. Syst. 34, 2703–2728 (2014)CrossRefGoogle Scholar
  11. 11.
    Choe, K., Han, J., Lin, C.-S., Lin, T.-C.: Uniqueness and solution structure of nonlinear equations arising from the Chern–Simons gauged \(O(3)\) sigma models. J. Differ. Equ. 255, 2136–2166 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Choe, K., Kim, N.: Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 313–338 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Choe, K., Nam, H.-S.: Existence and uniqueness of topological multivortex solutions of the self-dual Chern–Simons \(CP(1)\) model. Nonlinear Anal. 66, 2794–2813 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chiacchio, F., Ricciardi, T.: Multiple vortices for a self-dual \(CP(1)\) Maxwell–Chern–Simons model. Nonlinear Differ. Equ. Appl. 13, 563–584 (2007)CrossRefGoogle Scholar
  15. 15.
    Ghosh, P.K., Ghosh, S.K.: Topological and nontopological solitons in a gauged \(O(3)\) sigma model with Chern–Simons term. Phys. Lett. B 366, 199–204 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Han, J., Huh, H.: Existence of topological solutions in the Maxwell gauged O(3) Sigma models. J. Math. Anal. Appl. 386, 61–74 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Han, J., Lin, C.-S.: Multiplicity for self-dual condensate solutions in the Maxwell–Chern–Simons O(3) sigma model. Commun. PDE 39, 1424–1450 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Han, J., Nam, H.-S.: On the topological multivortex solutions of the self-dual Maxwell–Chern–Simons gauged \(O(3)\) sigma model. Lett. Math. Phys. 73, 17–31 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Han, J., Song, K.: Existence and asymptotics of topological solutions in the self-dual Maxwell–Chern–Simons \(O(3)\) sigma model. J. Differ. Equ. 250, 204–222 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Han, J., Song, K.: Nontopological solutions in the self-dual Maxwell–Chern–Simons gauged \(O(3)\) sigma model. Nonlinear Anal. 118, 22–40 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hong, J., Kim, Y., Pac, P.Y.: Multivortex solutions of the abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2230–2233 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jackiw, R., Weinberg, E.J.: Self-dual Chen–Simons vortices. Phys. Rev. Lett. 64, 2234–2237 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kimm, K., Lee, K., Lee, T.: Anyonic Bogomol’nyi solitons in a gauged \(O(3)\) sigma model. Phys. Rev. D 53, 4436–4440 (1996)CrossRefGoogle Scholar
  24. 24.
    Nam, H.-S.: Asymptotics for the condensate multivortex solutions in the self-dual Chern–Simons \(CP(1)\) model. J. Math. Phys. 42, 5698–5712 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nirenberg, L.: Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics 6. Amer. Math. Soc., Rhode Island (2001)Google Scholar
  26. 26.
    Nolasco, M., Tarantello, G.: Double vortex condensates in the Chern–Simons–Higgs theory. Calc. Var. PDE 9, 31–94 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ricciardi, T.: Multiplicity for a nonlinear fourth-order elliptic equation in Maxwell–Chern–Simons vortex theory. Differ. Int. Equ. 17, 369–390 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ricciardi, T., Tarantello, G.: Vortices in the Maxwell–Chern–Simons theory. Commun. Pure Appl. Math. 53, 811–851 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schroers, B.J.: Bogomol’nyi solitons in a gauged \(O(3)\) sigma model. Phys. Lett. B 356, 291–296 (1995)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schroers, B.J.: The spectrum of Bogomol’nyi solitons in gauged linear sigma models. Nucl. Phys. B 475, 440–468 (1996)CrossRefGoogle Scholar
  31. 31.
    Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15, 189–257 (1965)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tarantello, G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, S.-G., Chen, Z.-Y., Chern, J.-L.: The solution structure of the \(O(3)\) sigma model in a Maxwell–Chern–Simons theory. J. Math. Phys. 58, Article No. 071503 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, Y.: A necessary and sufficient conditions for the existence of multisolitons in a self-dual gauged sigma model. Commun. Math. Phys. 181, 485–506 (1996)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yang, Y.: The existence of solitons in gauged sigma models with broken symmetry: some remarks. Lett. Math. Phys. 40, 177–189 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer Monographs in Mathematics. Springer, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKyung Hee UniversitySeoulKorea

Personalised recommendations