Advertisement

Graham type theorem on classical bounded symmetric domains

  • Ren-Yu ChenEmail author
  • Song-Ying Li
Article
  • 38 Downloads

Abstract

Graham Theorem on the unit ball \(B_{n}\) in \(\mathbb {C}^{n}\) states that every invariant harmonic function \(u\in C^{n}(\overline{B}_{n})\) must be pluriharmonic in \(B_{n}\) (Graham in Commun Partial Differ Equ 8(5):433–476, 1983). This rigidity phenomenon of Graham has been studied by many authors [see, for examples, Graham and Lee (Duke Math J 57:697–720, 1988), Li and Simon (Am J Math 124:1045–1057, 2002), Li and Wei (Sci China Math 53:779–790, 2010), etc]. In this paper, we prove that Graham theorem holds on classical bounded symmetric domains, which include Type I and Type II domains, Type III domain III(n) and Type IV domain IV(n) with even \(n\ge 4\).

Keywords

Invariant harmonic Bounded symmetric domains Pluriharmonic Laplace–Beltrami operator 

Mathematics Subject Classification

Primary 32A50 Secondary 32T15 35J70 35R01 

Notes

Acknowledgements

The authors thank the referee for a very careful reading of the manuscript and providing a number of helpful comments and corrections.

References

  1. 1.
    Ahern, P., Bruna, J., Cascante, C.: \(H^p\)-theory for generalized \(M\)-harmonic functions in the unit ball. Indiana Univ. Math. J. 45(1), 103–135 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  3. 3.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)CrossRefGoogle Scholar
  4. 4.
    Graham, C .R.: The dirichlet problem for the Bergman Laplacian. 1. Commun. Partial Differ. Equ. 8(5), 433–476 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Graham, C .R.: The dirichlet problem for the Bergman Laplacian. 2. Commun. Partial Differ. Equ. 8(6), 563–641 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Graham, C.R., Lee, J.M.: Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J. 57(3), 697–720 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Translated from the Russian by Leo Ebner and Adam Korányi. American Mathematical Society, Providence (1963)Google Scholar
  8. 8.
    Krantz, S.G.: Function Theory of Several Complex Variables. The Wadsworth & Brooks/Cole Mathematics Series, 2nd edn. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992)Google Scholar
  9. 9.
    Li, S.-Y., Ni, L.: On the holomorphicity of proper harmonic maps between unit balls with the Bergman metrics. Math. Ann. 316(2), 333–354 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, S.-Y., Simon, E.: Boundary behavior of harmonic functions in metrics of Bergman type on the polydisc. Am. J. Math. 124(5), 1045–1057 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, S.-Y., Wei, D.: On the rigidity theorem for harmonic functions in Kähler metric of Bergman type. Sci. China Math. 53(3), 779–790 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, C., Peng, L.: Boundary regularity in the Dirichlet problem for the invariant Laplacians \(\Delta _\gamma \) on the unit real ball. Proc. Am. Math. Soc. 132(11), 3259–3268 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Loos, O.: Bounded Symmetric Domains and Jordan Pairs. Lecture Notes. University of California, Irvine (1977)Google Scholar
  14. 14.
    Lu, Q.-K.: Classical Manifolds and Classical Domains. Shanghai Scientific and Technical press, Shanghai (1963)Google Scholar
  15. 15.
    Rudin, W.: Function Theory in the Unit Ball of \({ C}^{n}\). Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241. Springer, New York (1980)Google Scholar
  16. 16.
    Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of California IrvineIrvineUSA
  3. 3.College of Mathematics and InformaticsFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations