Advertisement

Lipschitz estimates and existence of correctors for nonlinearly elastic, periodic composites subject to small strains

  • Stefan Neukamm
  • Mathias SchäffnerEmail author
Article
  • 9 Downloads

Abstract

We consider periodic homogenization of nonlinearly elastic composite materials. Under suitable assumptions on the stored energy function (frame indifference; minimality, non-degeneracy and smoothness at identity; \(p\ge d\)-growth from below), and on the microgeometry of the composite (covering the case of smooth, periodically distributed inclusions with touching boundaries), we prove that in an open neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula that can be represented with help of a corrector. This generalizes a recent result of the authors by significantly relaxing the spatial regularity assumptions on the stored energy function. As an application, we consider the nonlinear elasticity problem for \(\varepsilon \)-periodic composites, and prove that minimizers (subject to small loading and well-prepared boundary data) satisfy a Lipschitz estimate that is uniform in \(0<\varepsilon \ll 1\). A key ingredient of our analysis is a new Lipschitz estimate (under a smallness condition) for monotone systems with spatially piecewise-constant coefficients. The estimate only depends on the geometry of the coefficient’s discontinuity-interfaces, but not on the distance between these interfaces.

Mathematics Subject Classification

35B27 74B20 35B65 

Notes

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project No. 405009441, and in the context of TU Dresden’s Institutional Strategy “The Synergetic University”.

References

  1. 1.
    Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40, 803–847 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avellaneda, M., Lin, F.: \(L^p\) bounds on singular integrals in homogenization. Commun. Pure Appl. Math. 44, 897–910 (1991)CrossRefGoogle Scholar
  3. 3.
    Armstrong, S., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219, 255–348 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Armstrong, S., Smart, C.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. 49, 423–481 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Armstrong, S., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. 69, 1882–1923 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics and Dynamics, pp. 3–59. Springer, Berlin (2002)CrossRefGoogle Scholar
  8. 8.
    Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. 9, 313–321 (1985)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Byun, S.S., Kim, Y.: Elliptic equations with measurable nonlinearities in nonsmooth domains. Adv. Math. 288, 152–200 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Byun, S.S., Kim, Y.: Riesz potential estimates for parabolic equations with measurable nonlinearities. Int. Math. Res. Not. (2017).  https://doi.org/10.1093/imrn/rnx080
  12. 12.
    Byun, S.S., Ryu, S., Wang, L.: Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains. Manuscr. Math. 133, 225–245 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cardone, G., Pasthukova, S.E., Zhikov, V.V.: Some estimates for non-linear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29, 101–110 (2005)MathSciNetGoogle Scholar
  14. 14.
    Chipot, M., Kinderlehrer, D., Vergara-Caffarelli, G.: Smoothness of linear laminates. Arch. Ration. Mech. Anal. 96, 81–96 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Conti, S., Dolzmann, G., Kirchheim, B., Müller, S.: Sufficient conditions for the validity of the Cauchy–Born rule close to \(\text{ SO }(n)\). J. Eur. Math. Soc. 8, 515–530 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Friesecke, G., Theil, F.: Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993)CrossRefGoogle Scholar
  18. 18.
    Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edn. Scuola Normale Superiore Pisa, Pisa (2012)CrossRefGoogle Scholar
  19. 19.
    Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105. Princeton University Press, Princeton (1983)Google Scholar
  20. 20.
    Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)CrossRefGoogle Scholar
  21. 21.
    Gloria, A., Neukamm, S.: Commutability of homogenization and linearization at the identity in finite elasticity and applications. Ann. Inst. H. Poincaré Anal. Non Lineaire 28, 941–964 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. arxiv:1409.2678
  23. 23.
    Kenig, C., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26, 901–937 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kristensen, J., Melcher, C.: Regularity in oscillatory nonlinear elliptic systems. Math. Z. 260, 813–847 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262, 4205–4269 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, Y.Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56, 892–925 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, Y.Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153, 91–151 (2000)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99, 189–212 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Mathematics 1713, pp. 85–210. Springer, Berlin (1999)Google Scholar
  31. 31.
    Müller, S., Neukamm, S.: On the commutability of homogenization and linearization in finite elasticity. Arch. Ration. Mech. Anal. 201, 465–500 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Neukamm, S., Schäffner, M.: Quantitative homogenization in nonlinear elasticity for small loads. Arch. Ration. Mech. Anal. 230(1), 343–396 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shen, Z.: Lectures on Periodic Homogenization of Elliptic Systems. arxiv:1710.11257
  34. 34.
    Sverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99, 15269–15276 (2002)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, K.: Energy minimizers in nonlinear elastostatics and the implicit function theorem. Arch. Ration. Mech. Anal. 114, 95–117 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of MathematicsTechnische Universität DresdenDresdenGermany
  2. 2.Institute of MathematicsLeipzig UniversityLeipzigGermany

Personalised recommendations