Advertisement

A universal thin film model for Ginzburg–Landau energy with dipolar interaction

  • Cyrill B. MuratovEmail author
Article

Abstract

We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg–Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of \(\Gamma \)-convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg–Landau model. On the other hand, when the film thickness vanishes while the sample’s lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.

Mathematics Subject Classification

35B36 35B40 49S05 

Notes

Acknowledgements

This work was supported, in part, by NSF via Grants DMS-1313687 and DMS-1614948. The author would like to thank V. Slastikov for many valuable comments.

References

  1. 1.
    Andelman, D., Broçhard, F., Joanny, J.F.: Phase transitions in Langmuir monolayers of polar molecules. J. Chem. Phys. 86, 3673–3681 (1987)CrossRefGoogle Scholar
  2. 2.
    Andelman, D., Rosensweig, R.E.: Modulated phases: review and recent results. J. Phys. Chem. B. 113, 3785–3798 (2009)CrossRefGoogle Scholar
  3. 3.
    Braides, A.: \(\Gamma \)-Convergence for Beginners, Volume 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002)Google Scholar
  4. 4.
    Braides, A., Truskinovsky, L.: Asymptotic expansions by \(\Gamma \)-convergence. Contin. Mech. Thermodyn. 20, 21–62 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  6. 6.
    Choksi, R., Kohn, R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51, 259–289 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61–79 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity. 7, 633–696 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    DeSimone, A., Knüpfer, H., Otto, F.: 2-d stability of the Néel wall. Calc. Var. PDE. 27, 233–253 (2006)CrossRefGoogle Scholar
  10. 10.
    DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertotti, G., Mayergoyz, I.D. (eds.) The Science of Hysteresis, Volume 2 of Physical Modelling, Micromagnetics, and Magnetization Dynamics, Academic Press, Oxford (2006)Google Scholar
  11. 11.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Evans, L.C., Gariepy, R.L.: Measure Theory and Fine Properties of Functions. Routledge, Boca Raton (2015)CrossRefGoogle Scholar
  13. 13.
    Garel, T., Doniach, S.: Phase transitions with spontaneous modulations-the dipolar Ising ferromagnet. Phys. Rev. B. 26, 325–329 (1982)CrossRefGoogle Scholar
  14. 14.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)CrossRefGoogle Scholar
  15. 15.
    Gioia, G., James, R.D.: Micromagnetics of very thin films. Proc. R. Soc. Lond. Ser. A. 453, 213–223 (1997)CrossRefGoogle Scholar
  16. 16.
    Hohenberg, P.C., Krekhov, A.P.: An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)Google Scholar
  18. 18.
    Jagla, E.A.: Numerical simulations of two-dimensional magnetic domain patterns. Phys. Rev. E. 70, 046204 (2004)CrossRefGoogle Scholar
  19. 19.
    Kaplan, B., Gehring, G.A.: The domain structure in ultrathin magnetic films. J. Magn. Magn. Mater. 128, 111–116 (1993)CrossRefGoogle Scholar
  20. 20.
    Knüpfer, H., Muratov, C.B.: Domain structure of bulk ferromagnetic crystals in applied fields near saturation. J. Nonlinear Sci. 21, 921–962 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Knüpfer, H., Muratov, C.B., Nolte, F.: Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Rat. Mech. Anal. (2018) (to appear)Google Scholar
  22. 22.
    Kohn, R.V., Slastikov, V.V.: Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178, 227–245 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Pergamon Press, London (1984)Google Scholar
  24. 24.
    Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  25. 25.
    Lu, J., Moroz, V., Muratov, C.B.: Orbital free density functional theory of out-of-plane charge screening in graphene. J. Nonlinear Sci. 25, 1391–1430 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Malozemoff, A.P., Slonczewski, J.C.: Magnetic Domain Walls in Bubble Materials. Academic Press, New York (1979)Google Scholar
  27. 27.
    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98, 123–142 (1987)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic ising-kac model to \(\Phi ^4_2\). Comm. Pure Appl. Math. (2016) (published online)Google Scholar
  29. 29.
    Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulombic type. Ph. D. thesis, Boston University (1998)Google Scholar
  30. 30.
    Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E. 66(066108), 1–25 (2002)MathSciNetGoogle Scholar
  31. 31.
    Muratov, C.B.: Droplet phases in non-local Ginzburg–Landau models with Coulomb repulsion in two dimensions. Comm. Math. Phys. 299, 45–87 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Muratov, C.B., Osipov, V.V., Vanden-Eijnden, E.: Persistence of magnetization configurations against thermal noise in thin ferromagnetic nanorings with four-fold magnetocrystalline anisotropy. J. Appl. Phys. 117, 17D118 (2015)CrossRefGoogle Scholar
  33. 33.
    Ng, K.-O., Vanderbilt, D.: Stability of periodic domain structures in a two-dimensional dipolar model. Phys. Rev. B. 52, 2177–2183 (1995)CrossRefGoogle Scholar
  34. 34.
    Otto, F., Viehmann, T.: Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy. Calc. Var. Partial Differ. Equ. 38, 135–181 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Roland, C., Desai, R.C.: Kinetics of quenched systems with long-range repulsive interactions. Phys. Rev. B. 42, 6658–6669 (1990)CrossRefGoogle Scholar
  36. 36.
    Rosensweig, R.E.: Ferrohydrodynamics. Courier Dover Publications, New York (1997)Google Scholar
  37. 37.
    Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science. 267, 476–483 (1995)CrossRefGoogle Scholar
  38. 38.
    Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals: Physical Foundations. Springer, New York (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations