On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations
Article
First Online:
- 27 Downloads
Abstract
We obtain Schauder estimates for a class of concave fully nonlinear nonlocal parabolic equations of order \(\sigma \in (0,2)\) with rough and non-symmetric kernels. We also prove that the solution to a translation invariant equation with merely bounded data is \(C^\sigma \) in x variable and \(\Lambda ^1\) in t variable, where \(\Lambda ^1\) is the Zygmund space. From these results, we can derive the corresponding results for nonlocal elliptic equations with rough and non-symmetric kernels, which are new even in this case.
Mathematics Subject Classification
Primary 35K55 Secondary 35B45 35B65 35R09Notes
Acknowledgements
The authors would like to thank the referees for their careful review as well as many valuable comments and suggestions.
References
- 1.Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)MathSciNetCrossRefGoogle Scholar
- 2.Caffarelli, L., Silvestre, L.: The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174(2), 1163–1187 (2011)MathSciNetCrossRefGoogle Scholar
- 3.Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)MathSciNetCrossRefGoogle Scholar
- 4.Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, Volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995)Google Scholar
- 5.Lara, H.C., Dvila, G.: \(C^{\sigma,\alpha }\) estimates for concave, non-local parabolic equations with critical drift. J. Integral Equ. Appl. 28(3), 373–394 (2016)MathSciNetCrossRefGoogle Scholar
- 6.Chang-Lara, H., Davila, G.: Hölder estimates for non-local parabolic equations with critical drift. J. Differ. Equ. 260(5), 4237–4284 (2016)CrossRefGoogle Scholar
- 7.Chang-Lara, H., Dávila, G.: Regularity for solutions of non local parabolic equations. Calc. Var. Partial Differ. Equ. 49(1–2), 139–172 (2014)MathSciNetCrossRefGoogle Scholar
- 8.Chang-Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256(1), 130–156 (2014)MathSciNetCrossRefGoogle Scholar
- 9.Chang-Lara, H.A., Kriventsov, D.: Further time regularity for non-local, fully non-linear parabolic equations. Commun. Pure Appl. Math. https://doi.org/10.1002/cpa.21671
- 10.Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004)zbMATHGoogle Scholar
- 11.Dong, H., Kim, D.: On \(L_p\)-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)MathSciNetCrossRefGoogle Scholar
- 12.Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33(6), 2319–2347 (2013)MathSciNetCrossRefGoogle Scholar
- 13.Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)MathSciNetCrossRefGoogle Scholar
- 14.Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 editionzbMATHGoogle Scholar
- 15.Tianling, J., Jingang, X.: Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1375–1407 (2016)MathSciNetCrossRefGoogle Scholar
- 16.Jin, T., Xiong, J.: Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete Contin. Dyn. Syst. 35(12), 5977–5998 (2015)MathSciNetCrossRefGoogle Scholar
- 17.Komatsu, T.: Pseudodifferential operators and Markov processes. J. Math. Soc. Jpn. 36(3), 387–418 (1984)MathSciNetCrossRefGoogle Scholar
- 18.Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75–108 (1983)MathSciNetGoogle Scholar
- 19.Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Volume 12 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1996)Google Scholar
- 20.Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Liet. Mat. Rink. 32(2), 299–331 (1992)MathSciNetzbMATHGoogle Scholar
- 21.Mikulevicius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem. Potential Anal. 40(4), 539–563 (2014)MathSciNetCrossRefGoogle Scholar
- 22.Mou, C.: Interior regularity for nonlocal fully nonlinear equations with Dini continuous terms. J. Differ. Equ. 260(11), 7892–7922 (2016)MathSciNetCrossRefGoogle Scholar
- 23.Safonov, M.V.: Classical solution of second-order nonlinear elliptic equations. Izv. Akad. Nauk SSSR Ser. Mat. 52(6), 1272–1287, 1328 (1988)Google Scholar
- 24.Schwab, R.W., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9(3), 727–772 (2016)MathSciNetCrossRefGoogle Scholar
- 25.Serra, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(1), 615–629 (2015)MathSciNetCrossRefGoogle Scholar
- 26.Serra, J.: \(C^{\sigma +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(4), 3571–3601 (2015)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019