Advertisement

Nonlinear stability and instability in the Rayleigh–Taylor problem of stratified compressible MHD fluids

  • Fei JiangEmail author
  • Song Jiang
Article
  • 42 Downloads

Abstract

We establish the stability/instability criteria for the stratified compressible magnetic Rayleigh–Taylor (RT) problem in Lagrangian coordinates. More precisely, under the stability condition \(\varXi <1\) (under such case, the third component of impressed magnetic field is not zero), we show the existence of a unique solution with an algebraic decay in time for the (compressible) magnetic RT problem with proper initial data. The stability result in particular shows that a sufficiently large (impressed) vertical magnetic field can inhibit the growth of the RT instability. On the other hand, if \(\varXi >1\), there exists an unstable solution to the magnetic RT problem in the Hadamard sense. This in particular shows that the RT instability still occurs when the strength of an magnetic field is small or the magnetic field is horizontal. Moreover, by analyzing the stability condition in the magnetic RT problem for vertical magnetic fields, we can observe that the compressibility destroys the stabilizing effect of magnetic fields in the vertical direction. Fortunately, the instability in the vertical direction can be inhibited by the stabilizing effect of the pressure, which also plays an important role in the proof of the stability of the magnetic RT problem. In addition, we extend the results for the magnetic RT problem to the compressible viscoelastic RT problem, and find that the stabilizing effect of elasticity is stronger than that of the magnetic fields.

Mathematics Subject Classification

76E25 (Stability and instability of magnetohydrodynamic and electrohydrodynamic flows) 76N10 (Existence, uniqueness, and regularity theory) 

Notes

Acknowledgements

The authors would like to thank the anonymous referee for invaluable suggestions, which improve the presentation of this paper. The authors also thank Dr. Weicheng Zhang for pointing out Dirichlets approximation theorem.

References

  1. 1.
    Abidi, H., Zhang, P.: On the global solution of a 3-D MHD system with initial data near equilibrium. Commun. Pure Appl. Math. 70(8), 1509–1561 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adams, R.A.: Sobolev Space. Academic Press, New York (1975)Google Scholar
  3. 3.
    Adams, R.A., John, J.F.F.: Sobolev Space. Academic Press, New York (2005)Google Scholar
  4. 4.
    Barrett, J.W., Lu, Y., Süli, E.: Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 15, 1265–1323 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boffetta, G., Mazzino, A., Musacchio, S., Vozella, L.: Rayleigh–Taylor instability in a viscoelastic binary fluid. J. Fluid Mech. 643, 127–136 (2010)CrossRefGoogle Scholar
  6. 6.
    Bollada, P.C., Phillips, T.N.: On the mathematical modelling of a compressible viscoelastic fluid. Arch. Ration. Mech. Anal. 205, 1–26 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bucciantini, N., Amato, E., Bandiera, R., Blondin, J.M., Zanna, L.D.: Magnetic Rayleigh–Taylor instability for pulsar wind nebulae in expanding supernova remnants. Astron. Astrophys. 423, 253–265 (2004)CrossRefGoogle Scholar
  8. 8.
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. In: The International Series of Monographson Physics. Clarendon Press, Oxford (1961)Google Scholar
  9. 9.
    Fan, D.Y., Zi, R.Z.: Strong solutions of 3D compressible Oldroyd-B fluids. Math. Methods Appl. Sci. 36, 1423–1439 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. I. H. Poincare-An. 14, 187–209 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems. In: Harmonic Maps and Minimal Graphs. Scuola Normale Superiore Pisa, Pisa (2012)Google Scholar
  12. 12.
    Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270, 635–689 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, Y., Tice, I.: Compressible, inviscid Rayleigh–Taylor instability. Indiana Univ. Math. J. 60, 677–712 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Guo, Y., Tice, I.: Almost exponential decay of periodic viscous surface waves without surface tension. Arch. Ration. Mech. Anal. 207, 459–531 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal. PDE 6, 1429–1533 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, Y., Strauss, W.A.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48, 861–894 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Guo, Y., WA, S.: Nonlinear instability of double-humped equilibria. Ann. I. H. Poincare-An. 12, 339–352 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hester, J.J., Stone, J.M., Scowen, Paul A.: WFPC2 studies of the crab nebula. III. Magnetic Rayleigh–Taylor instabilities and the origin of the filaments. Astrophys. J. 456, 225–233 (1996)CrossRefGoogle Scholar
  20. 20.
    Hide, R.: Waves in a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc. R. Soc. Lond. Ser. A. 233, 376–396 (1955)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hillier, A., Isobe, H., Shibata, K., Berger, T.: Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756, 110 (2012)CrossRefGoogle Scholar
  22. 22.
    Hillier, A.S.: On the nature of the magnetic Rayleigh–Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Notices Roy. Astron. Soc. 462, 2256–2265 (2016)CrossRefGoogle Scholar
  23. 23.
    Hu, X.P.: Global existence for two dimensional compressible magnetohydrodynamic flows with zero magnetic diffusivity. arXiv:1405.0274v1 [math.AP] 1 May 2014 (2014)
  24. 24.
    Hu, X.P., Wang, D.H.: Local strong solution to the compressible viscoelastic flow with large data. J. Differ. Equ. 249, 1179–1198 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hu, X.P., Wang, D.H.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250, 1200–1231 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hu, X.P., Wang, D.H.: Strong solutions to the three-dimensional compressible viscoelastic fluids. J. Differ. Equ. 252, 4027–4067 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hu, X.P., Wang, D.H.: The initial-boundary value problem for the compressible viscoelastic flows. Discrete Contin. Dyn. Syst. 35, 917–934 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hu, X.P., Wu, G.C.: Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 45, 2815–2833 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hwang, H.J.: Variational approach to nonlinear gravity-driven instability in a MHD setting. Quart. Appl. Math. 66, 303–324 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Isobe, H., Miyagoshi, T., Shibata, K., Yokoyam, T.: Three-dimensional simulation of solar emerging flux using the earth simulator I. Magnetic Rayleigh–Taylor instability at the top of the emerging flux as the origin of filamentary structure. Publ. Astron. Soc. Jpn. 58, 423–438 (2006)CrossRefGoogle Scholar
  31. 31.
    Isobe, H., Miyagoshi, T., Shibata, K., Yokoyam, T.: Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478–481 (2005)CrossRefGoogle Scholar
  32. 32.
    Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: local well-posedness. SIAM J. Math. Anal. 48, 2602–2673 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: stability and vanishing surface tension limit. Commun. Math. Phys. 343, 1039–1113 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity flows in a bounded domain. Adv. Math. 264, 831–863 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Jiang, F., Jiang, S.: On linear instability and stability of the Rayleigh–Taylor problem in magnetohydrodynamics. J. Math. Fluid Mech. 17, 639–668 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jiang, F., Jiang, S.: On the stabilizing effect of the magnetic field in the magnetic Rayleigh–Taylor problem. SIAM J. Math. Anal. 50, 491–540 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Jiang, F., Jiang, S.: On the dynamical stability and instability of Parker problem. Physica D (2019).  https://doi.org/10.1016/j.physd.2018.11.004
  38. 38.
    Jiang, F., Jiang, S., Wang, W.W.: Nonlinear Rayleigh–Taylor instability in nonhomogeneous incompressible viscous magnetohydrodynamic fluids. Discrete Contin. Dyn. Syst. 9, 1853–1898 (2016)CrossRefGoogle Scholar
  39. 39.
    Jiang, F., Jiang, S., Wang, Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Jiang, F., Jiang, S., Wu, G.C.: On stabilizing effect of elasticity in the Rayleigh–Taylor problem of stratified viscoelastic fluids. J. Funct. Anal. 272, 3763–3824 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Jiang, F., Wu, G.C., Zhong, X.: On exponential stability of gravity driven viscoelastic flows. J. Differ. Equ. 260, 7498–7534 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Jun, B.I., Norman, M.L., Stone, J.M.: A numerical study of Rayleigh–Taylor instability in magnetic fluids. Astrophys. J. 453, 332–349 (1966)CrossRefGoogle Scholar
  43. 43.
    Kruskal, M., Schwarzchild, M.: Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. Ser. A. 223, 348–360 (1954)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Lee, J.M.: Introduction to Smooth Manifolds. Springer, Berlin (2013)zbMATHGoogle Scholar
  45. 45.
    Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lin, F.H.: Some analytical issues for elastic complex fluids. Commun. Pure Appl. Math. 65, 893–919 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lin, F.H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lin, F.H., Zhang, P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558 (2008)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Lin, F.H., Zhang, P.: Global small solutions to an mhd type system: the three-dimensional. Commun. Pure. Appl. Math. 67, 531–580 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Pacitto, G., Flament, C., Bacri, J.C., Widom, M.: Rayleigh-Taylor instability with magnetic fluids: experiment and theory. Phys. Rev. E. 62, 7941 (2000)CrossRefGoogle Scholar
  51. 51.
    Qian, J.Z., Zhang, Z.F.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Rayleigh, L.: Investigation of the character of the equilibrium of an in compressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177 (1883)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Ren, X.X., Wu, J.H., Xiang, Z.Y., Zhang, Z.F.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Sharma, R.C., Sharma, K.C.: Rayleigh–Taylor instability of two viscoelastic superposed fluids. Acta Phys. Acad. Sci. Hung. 45, 213–220 (1978)CrossRefGoogle Scholar
  55. 55.
    Stone, M.J., Gardiner, T.: Nonlinear evolution of the magnetohydrodynamic Rayleigh–Taylor instability. Phys. Fluids 19, 306–327 (2007)CrossRefGoogle Scholar
  56. 56.
    Stone, M.J., Gardiner, T.: The magnetic Rayleigh–Tayolor instability in three dimensions. Astrophys. J. 671, 1726–1735 (2007)CrossRefGoogle Scholar
  57. 57.
    Tan, Z., Wang, Y.J.: Global well-posedness of an initial–boundary value problem for viscous non-resistive MHD systems. SIAM J. Math. Anal. 50, 1432–1470 (2018)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Taylor, G.I.: The stability of liquid surface when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A. 201, 192–196 (1950)zbMATHGoogle Scholar
  59. 59.
    Wang, J.H.: Two-Dimensional Nonsteady Flows and Shock Waves. Science Press, Beijing (1994). (in Chinese) Google Scholar
  60. 60.
    Wang, Y.J.: Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D. Arch. Ration. Mech. Anal. (2018).  https://doi.org/10.1007/s00205-018-1307-4
  61. 61.
    Wang, Y.J., Tice, I., Kim, C.: The viscous surface-internal wave problem: global well-posedness and decay. Arch. Ration. Mech. Anal. 212, 1–92 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina
  2. 2.Key Laboratory of Operations Research and Control of Universities in FujianFuzhouChina
  3. 3.Institute of Applied Physics and Computational MathematicsBeijingChina

Personalised recommendations