Multiple normalized solutions for a competing system of Schrödinger equations

  • Thomas Bartsch
  • Nicola SoaveEmail author


We prove the existence of infinitely many solutions \(\lambda _1, \lambda _2 \in \mathbb {R}\), \(u,v \in H^1(\mathbb {R}^3)\), for the nonlinear Schrödinger system
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u - \lambda _1 u = \mu u^3+ \beta u v^2 &{} \text {in }\mathbb {R}^3 \\ -\Delta v- \lambda _2 v = \mu v^3 +\beta u^2 v &{} \text {in }\mathbb {R}^3\\ u,v>0 &{} \text {in }\mathbb {R}^3 \\ \int _{\mathbb {R}^3} u^2 = a^2 \quad \text {and} \quad \int _{\mathbb {R}^3} v^2 = a^2, \end{array}\right. } \end{aligned}$$
where \(a,\mu >0\) and \(\beta \le -\mu \) are prescribed. Our solutions satisfy \(u\ne v\) so they do not come from a scalar equation. The proof is based on a new minimax argument, suited to deal with normalization conditions.

Mathematics Subject Classification

35J50 35J15 35J60 



Nicola Soave is partially supported by the project ERC Advanced Grant 2013 No. 339958 “Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT”, by the PRIN-2015KB9WPT_010 Grant: “Variational methods, with applications to problems in mathematical physics and geometry”, and by the GNAMPA group.


  1. 1.
    Bahri, A., Lions, P.L.: Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41(8), 1027–1037 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Archiv der Math. 100(1), 75–83 (2012)CrossRefGoogle Scholar
  4. 4.
    Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. (2015). (to appear), arXiv:1507.04649
  5. 5.
    Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. de Math. Pures et Appl. 106(4), 583–614 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cao, D., Chern, I.-L., Wei, J.: On ground state of spinor Bose–Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18, 427–445 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dancer, E., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. de l’Inst. Henri Poincare (C) Non Linear Anal. 27(3), 953–969 (2010)CrossRefGoogle Scholar
  9. 9.
    Fibich, G., Merle, F.: Self-focusing on bounded domains. Phys. D 155(12), 132–158 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghoussoub, N.: Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993). With appendices by David RobinsonGoogle Scholar
  11. 11.
    Gou, T., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nguyen, N.V., Wang, Z.-Q.: Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete Contin. Dyn. Syst. 36(2), 1005–1021 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Noris, B., Tavares, H., Terracini, S., Verzini, G.: Convergence of minimax structures and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc. 14(4), 1245–1273 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Preprint (2016). arXiv:1607.04520
  20. 20.
    Solimini, S.: Morse index estimates in min-max theorems. Manuscr. Math. 63(4), 421–453 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45(1), 169–192 (1982)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Stuart, C.A.: Bifurcation from the continuous spectrum in \(L^2\)-theory of elliptic equations on \(\mathbb{R}^N\). Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly

Personalised recommendations