Advertisement

Big data analytics for preventive medicine

  • Muhammad Imran Razzak
  • Muhammad ImranEmail author
  • Guandong Xu
Cognitive Computing for Intelligent Application and Service
  • 54 Downloads

Abstract

Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations.

Keywords

Disease prevention Data analytics Healthcare Knowledge discovery Prevention methodologies 

Notes

Funding

This work is partially supported by Australian Research Council Linkage Projects under LP170100891 and “Deanship of Scientific Research, King Saud University (Grant No. RG-1435-051)”.

References

  1. 1.
    Razzak MI, Naz S (2017) Microscopic blood smear segmentation and classification using deep contour aware cnn and extreme machine learning. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 801–807Google Scholar
  2. 2.
    Children: reducing mortality. 2015: updated September (2016)Google Scholar
  3. 3.
    Health expenditure, total (% of gdp). World Health Organization Global Health Expenditure Database (2014)Google Scholar
  4. 4.
    National health expenditure projections 2012–2022 (2012)Google Scholar
  5. 5.
    Bosworth H (2010) Improving patient treatment adherence: a clinician’s guide. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Higginbotham EJ, Satcher D (2008) The public health approach to eliminating disparities in health. Am J Public Health 98(3):400–403CrossRefGoogle Scholar
  7. 7.
    Patil HK, Seshadri R (2014) Big data security and privacy issues in healthcare. In: 2014 IEEE international congress on big data, pp 762–765Google Scholar
  8. 8.
    Slawson DL, Fitzgerald N, Morgan KT (2013) Position of the academy of nutrition and dietetics: the role of nutrition in health promotion and chronic disease prevention. J Acad Nutr Diet 113(7):972–979CrossRefGoogle Scholar
  9. 9.
    World Health Organization (1990) Diet, nutrition, and the prevention of chronic diseases. Report of a WHO Study Group. Diet, nutrition, and the prevention of chronic diseases. Report of a WHO Study Group, p 797Google Scholar
  10. 10.
    Willett WC, Koplan JP, Nugent R, Dusenbury C, Puska P, Gaziano TA (2006) Prevention of chronic disease by means of diet and lifestyle changes. Disease Control Priorities in Developing Countries, pp 833–850Google Scholar
  11. 11.
    Policy brief on ageing no. 3, older persons as consumers (2009)Google Scholar
  12. 12.
    Policy brief on ageing no. 6, health promotion and disease prevention (2010)Google Scholar
  13. 13.
    Rivera DE, Atienza AA, Nilsen W, Allison SM, Mermelstein R, Riley WT (2011) Health behavior models in the age of mobile interventions: are our theories up to the task? Transl Behav Med 1(1):57–71Google Scholar
  14. 14.
    Griffiths F, Munday S, Friede T, Stables D, Holt TA, Thorogood M (2010) Automated electronic reminders to facilitate primary cardiovascular disease prevention: randomised controlled trial. Br J Gen Pract 60(573):137–143CrossRefGoogle Scholar
  15. 15.
    Dasah JB, Kuranchie P, Amoah AGB, Adjei DN, Agyemang C (2015) The effect of electronic reminders on risk management among diabetic patients in low resourced settings. J Diabetes Complicat 29(6):818–821CrossRefGoogle Scholar
  16. 16.
    Waqialla M, Alshammari R, Razzak MI (2015) An ontology for remote monitoring of cardiac implantable electronic devices. In: 2015 international conference on computer, communications, and control technology (I4CT). IEEE, pp 520–523Google Scholar
  17. 17.
    Waqialla M, Razzak MI (2016) An ontology-based framework aiming to support cardiac rehabilitation program. Procedia Comput Sci 96:23–32CrossRefGoogle Scholar
  18. 18.
    Jiang Y, Shepherd M, Maddison R, Carter K, Cutfield R, McNamara C, Khanolkar M, Murphy Dobson R, Whittaker R (2016) Text message-based diabetes self-management support (SMS4BG): study protocol for a randomised controlled trial. Trials 17:179CrossRefGoogle Scholar
  19. 19.
    Alaleh Z, Hollmann Markus W, Frits H, Benedikt P, Jeroen H, Polderman Jorinde AW, de Groot FA (2016) An automated reminder for perioperative glucose regulation improves protocol compliance. Diabetes Res Clin Pract 116:80–82CrossRefGoogle Scholar
  20. 20.
    Fischer HH, Fischer IP, Pereira RI, Furniss AL, Rozwadowski JM, Moore SL, Durfee MJ, Raghunath SG, Tsai AG, Havranek EP (2016) Text message support for weight loss in patients with prediabetes: a randomized clinical trial. Diabetes Care 39:1364–1370CrossRefGoogle Scholar
  21. 21.
    Daghistani T, Al Shammari R, Razzak MI (2015) Discovering diabetes complications: an ontology based model. Acta Inform Med 23(6):385CrossRefGoogle Scholar
  22. 22.
    Gerber BS, Stolley MR, Thompson AL, Sharp LK, Fitzgibbon ML (2009) Mobile phone text messaging to promote healthy behaviors and weight loss maintenance: a feasibility study. Health Inform J 15(1):17–25CrossRefGoogle Scholar
  23. 23.
    Romanelli RJ, Block TJ, Hopkins D, Carpenter HA, Dolginsky MS, Hudes ML, Palaniappan LP, Block CH, Block G, Azar KM (2015) Diabetes prevention and weight loss with a fully automated behavioral intervention by email, web, and mobile phone: a randomized controlled trial among persons with prediabetes. J Med Internet Res 17(10):e240CrossRefGoogle Scholar
  24. 24.
    Steinhubl S, Kim S, Bae WK, Han JS, Kim JH, Lee K, Kim MJ, Kim JY, Oh S (2015) Effectiveness of 6 months of tailored text message reminders for obese male participants in a worksite weight loss program: randomized controlled trial. JMIR mHealth uHealth 3(1):e14CrossRefGoogle Scholar
  25. 25.
    Morgan P, Callister R, Collins C, Hutchesson MJ, Tan CY (2015) Enhancement of self-monitoring in a web-based weight loss program by extra individualized feedback and reminders: randomized trial. J Med Internet Res 18(4):e82Google Scholar
  26. 26.
    O’Grady JS, Thacher TD, Chaudhry R (2013) the effect of an automated clinical reminder on weight loss in primary care. J Am Board Fam Med 26(6):745–750CrossRefGoogle Scholar
  27. 27.
    Piette JD, List J, Rana GK, Townsend W, Striplin D, Heisler M (2015) Mobile health devices as tools for worldwide cardiovascular risk reduction and disease management. Circulation 132:2012–2027CrossRefGoogle Scholar
  28. 28.
    Moreland EC, Volkening LK, Lawlor MT, Chalmers KA, Anderson BJ, Laffel LMB (2006) Use of a blood glucose monitoring manual to enhance monitoring adherence in adults with diabetes: a randomized controlled trial. Arch Int Med 166(6):689–695CrossRefGoogle Scholar
  29. 29.
    Bonato P, Chan L, Patel S, Park H, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. J NeuroEng Rehabil 9:21CrossRefGoogle Scholar
  30. 30.
    Zhou H, Hu H, Harris ND (2006) Wearable inertial sensors for arm motion tracking in home-based rehabilitation. In: Arai T, Pfeifer R, Balch TR, Yokoi H (eds) IAS. IOS Press, Amsterdam, pp 930–937Google Scholar
  31. 31.
    Ahmed E, Yaqoob I, Hashem IAT, Khan I, Ahmed AIA, Imran M, Vasilakos AV (2017) The role of big data analytics in internet of things. Comput Netw 129:459–471CrossRefGoogle Scholar
  32. 32.
    Augustyniak P (2011) Personal wearable monitor of the heart rate variability. Bio-Algorithms Med-Syst 7(1):5–10Google Scholar
  33. 33.
    Parák J, Tarniceriu A, Renevey P, Bertschi M, Delgado-Gonzalo R, Korhonen I (2015) Evaluation of the beat-to-beat detection accuracy of pulse on wearable optical heart rate monitor. In: EMBC. IEEE, pp 8099–8102Google Scholar
  34. 34.
    Villalba E, Salvi D, Ottaviano M, Peinado I, Teresa AM, Akay A (2009) Wearable and mobile system to manage remotely heart failure. IEEE Trans Inf Technol Biomed 13(6):990–996CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Zheng J, Ha C (2016) Design and evaluation of a ubiquitous chest-worn cardiopulmonary monitoring system for healthcare application: a pilot study. Med Biol Eng Comput 55:283–294CrossRefGoogle Scholar
  36. 36.
    Wang Z, Jiang H, Yang K, Zhang L, Wei J, Li F, Chi B, Zhang C, Wu S, Lin Q, Jia W (2013) Lifetime tracing of cardiopulmonary sounds with ultra-low-power sound sensor stick connected to wireless mobile network. In: NEWCAS. IEEE, pp 1–4Google Scholar
  37. 37.
    Koo HS, Michaelson D, Teel K, Kim D-J, Park H, Park M (2016) Design preferences on wearable e-nose systems for diabetes. Int J Cloth Sci Technol 28(2):216–232CrossRefGoogle Scholar
  38. 38.
    Hosseini V (2015) Algorithm and related application for smart wearable devices to reduce the risk of death and brain damage in diabetic coma. J Diabetes Sci Technol 10(3):802–803MathSciNetCrossRefGoogle Scholar
  39. 39.
    Esser P, Steins D, Dawes H, Collett J (2014) Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil 11:36CrossRefGoogle Scholar
  40. 40.
    Kausar N, Palaniappan S, Samir BB, Abdullah A, Dey N (2016) Systematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patients. In: Hassanien AE, Grosan C, Tolba MF (eds) Applications of intelligent optimization in biology and medicine, vol 96. Intelligent Systems Reference Library. Springer, Berlin, pp 217–231CrossRefGoogle Scholar
  41. 41.
    Yoo C, Ramirez L, Liuzzi J (2014) Big data analysis using modern statistical and machine learning methods in medicine. Int Neourol J 18:50CrossRefGoogle Scholar
  42. 42.
    Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107CrossRefGoogle Scholar
  43. 43.
    Joshi S, Nair MK (2015) Prediction of heart disease using classification based data mining techniques. Springer, New Delhi, pp 503–511Google Scholar
  44. 44.
    Smitha T, Sundaram V (2012) Classification rules by decision tree for disease prediction. Int J Comput Appl 43(8):6–12Google Scholar
  45. 45.
    Anooj PKN (2011) Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules and decision tree rules. Cent Eur J Comput Sci 1(4):482–498Google Scholar
  46. 46.
    Persi Pamela I, Gayathri P, Jaisankar N (2013) A fuzzy optimization technique for the prediction of coronary heart disease using decision tree. Int J Eng Technol 5(3):2506–2514Google Scholar
  47. 47.
    Liu X, Fu H (2014) PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses. Sci World J.  https://doi.org/10.1155/2014/548483 Google Scholar
  48. 48.
    Anto S, Chandramathi S, Aishwarya S (2016) An expert system based on LS-SVM and simulated annealing for the diagnosis of diabetes disease. IJICT 9(1):88–100CrossRefGoogle Scholar
  49. 49.
    Vadicherla D, Sonawane S (2013) Decision support system for heart disease based on sequential minimal optimization in support vector machine. Int J Eng Sci Emerg Technol 2(2):19–26Google Scholar
  50. 50.
    Subbalakshmi G, Ramesh K, Rao MC (2011) Decision support in heart disease prediction system using Naive Bayes. Indian J Comput Sci Eng (IJCSE) 2(2):170–176Google Scholar
  51. 51.
    Tseng W-T, Chiang W-F, Liu S-Y, Roan J, Lin C-N (2015) The application of data mining techniques to oral cancer prognosis. J Med Syst 39(5):1–7CrossRefGoogle Scholar
  52. 52.
    Khan SU (2015) Classification of Parkinsons disease using data mining techniques. Parkinsons Dis Alzheimer Dis 2:4Google Scholar
  53. 53.
    Razzak MI, Blumenstein M, Xu G. Robust 2D joint sparse PCA. arXiv preprint arXiv:1001.2019
  54. 54.
    Razzak MI, Saris RA, Blumenstein M, Xu G (2018) Robust 2D joint sparse principal component analysis with f-norm minimization for sparse modelling: 2D-RJSPCA. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–7Google Scholar
  55. 55.
    Quinlan R (1986) Induction of decision trees. Mach Learn 1:81–106Google Scholar
  56. 56.
    Quinlan JR (1992) C4.5: programs for machine learning. Morgan Kaufmann, BurlingtonGoogle Scholar
  57. 57.
    Kong L, Wiederhold BK, Gao K, Wiederhold MD (2013) Clinical experiment to assess effectiveness of virtual reality teen smoking cessation program. Stud Health Technol Inform 19:58–62Google Scholar
  58. 58.
    Valdimir V, Corinna C (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  59. 59.
    Mangasarian OL, Musicant David R (2000) Lagrangian support vector machine classification. Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps
  60. 60.
    Luo L, Xie Y, Zhang Z, Li W-J (2015) Support matrix machines. In: International conference on machine learning, pp 938–947Google Scholar
  61. 61.
    Zheng Q, Zhu F, Qin J, Chen B, Heng P-A (2018) Sparse support matrix machine. Pattern Recognit 76:715–726CrossRefGoogle Scholar
  62. 62.
    Razzak MI, Blumenstein M, Xu G. Robust support matrix machine. arXiv preprint arXiv:1001.2019
  63. 63.
    Razzak MI, Blumenstein M, Xu G (2019) Multi-class support matrix machines by maximizing the inter-class margin for single trial EEG classification, pp 1–10Google Scholar
  64. 64.
    Razzak MI, Blumenstein M, Xu G. Cooperative evolution multiclass support matrix machines for single trial EEG classification. IEEE J Biomed Health Inform, pp 1–10Google Scholar
  65. 65.
    Kamruzzaman SM, Sarkar AM (2013) A new data mining scheme using artificial neural networks. Sensors 11(5):4622–4647CrossRefGoogle Scholar
  66. 66.
    Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. In: Classification in BioApps. Springer, Cham, pp 323–350Google Scholar
  67. 67.
    Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1CrossRefGoogle Scholar
  68. 68.
    Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Phan NH, Dou D, Wang H, Kil D, Piniewski B (2015) Ontology-based deep learning for human behavior prediction in health social networks. In: BCB. ACM, pp 433–442Google Scholar
  70. 70.
    Razzak I, Imran M, Xu G (2018) Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inform.  https://doi.org/10.1109/JBHI.2018.2874033 Google Scholar
  71. 71.
    Langley P, Sage S (2013) Induction of selective Bayesian classifiers. CoRR, arXiv:1302.6828
  72. 72.
    Boullé M (2007) Compression-based averaging of selective Naive Bayes classifiers. J Mach Learn Res 8:1659–1685MathSciNetzbMATHGoogle Scholar
  73. 73.
    Provost F (2000) Well-trained PETs: improving probability estimation trees, CDER working paper #00-04-is, Stern School of Business, NYU, NY, 10012Google Scholar
  74. 74.
    Boullé M (2006) Regularization and averaging of the selective Naive Bayes classifier. In: IJCNN. IEEE, pp 1680–1688Google Scholar
  75. 75.
    Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D (2007) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37CrossRefGoogle Scholar
  76. 76.
    Wrenn JO, Stein DM, Bakken S, Stetson PD (2010) Quantifying clinical narrative redundancy in an electronic health record. J Am Med Inform Assoc 17:49–53CrossRefGoogle Scholar
  77. 77.
    McInnes BT, Melton GB, Zhang R, Pakhomov S (2011) Evaluating measures of redundancy in clinical texts. In: AMIA annual symposium proceedingsGoogle Scholar
  78. 78.
    Cohen R, Elhadad M, Elhadad N (2013) Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies. BMC Bioinform 14(1):10CrossRefGoogle Scholar
  79. 79.
    Silva HB, Brito P, da Costa JP (2006) A partitional clustering algorithm validated by a clustering tendency index based on graph theory. Pattern Recognit 39(5):776–788zbMATHCrossRefGoogle Scholar
  80. 80.
    Cortijo FJ, Molina R, Garcia JA, Fdez-Valdivia J (1994) A dynamic approach for clustering data. Signal Process 44(2):181–196Google Scholar
  81. 81.
    Self M, Stutz J, Cheeseman P, Kelly J (1988) Autoclass: a Bayesian classification system. In: Proceedings of the fifth international conference on machine learning, Morgan Kaufman, Los Altos, CA, vol 58, issue Supplement, pp 54–64Google Scholar
  82. 82.
    Silva HB, Lerman I, Costa J (2006) Validation of very large data sets clustering by means of a nonparametric linear criterion. Classification, clustering and data analysis. Springer, Berlin, pp 147–157zbMATHGoogle Scholar
  83. 83.
    Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(1):159–179CrossRefGoogle Scholar
  84. 84.
    Cheeseman PC, Stutz JC (1996) Bayesian classification (AutoClass): theory and results. In: Advances in knowledge discovery and data mining, vol 180, pp 153–180Google Scholar
  85. 85.
    Dongkuan X, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193CrossRefGoogle Scholar
  86. 86.
    Cong S, Han J, Padua DA (2005) Parallel mining of closed sequential patterns. In: Grossman R, Bayardo RJ, Bennett KP (eds) KDD. ACM, New York, pp 562–567Google Scholar
  87. 87.
    Ahmed S, Coenen F, Leng PH (2006) Tree-based partitioning of date for association rule mining. Knowl Inf Syst 10(3):315–331CrossRefGoogle Scholar
  88. 88.
    Ceglar A, Roddick JF (2006) Association mining. ACM Comput Surv 38(2):5:1–5:42CrossRefGoogle Scholar
  89. 89.
    He J, Rong J, Sun L, Wang H, Zhang Y, Ma J (2018) D-ECG: a dynamic framework for cardiac arrhythmia detection from IoT-based ECGS. In: International conference on web information systems engineering. Springer, pp 85–99Google Scholar
  90. 90.
    Ma J, Sun L, Wang H, Zhang Y, Aickelin U (2016) Supervised anomaly detection in uncertain pseudoperiodic data streams. ACM Trans Internet Technol (TOIT) 16(1):4CrossRefGoogle Scholar
  91. 91.
    Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15CrossRefGoogle Scholar
  92. 92.
    Goldstein M, Uchida S (2016) A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4):e0152173CrossRefGoogle Scholar
  93. 93.
    Habeeb RA, Nasaruddin F, Gani A, Hashem IA, Ahmed E, Imran M (2018) Real-time big data processing for anomaly detection: a survey. Int J Inf Manag.  https://doi.org/10.1016/j.ijinfomgt.2018.08.006 Google Scholar
  94. 94.
    Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: SIGMODREC: ACM SIGMOD Record, vol 29Google Scholar
  95. 95.
    Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: European conference on principles of data mining and knowledge discovery, PKDD, LNCS, vol 6Google Scholar
  96. 96.
    Goldstein M, Dengel A (2012) Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In: Poster and demo track of the 35th German conference on artificial intelligence (KI-2012), pp 59–63Google Scholar
  97. 97.
    Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471zbMATHCrossRefGoogle Scholar
  98. 98.
    Abdennadher S, Amer M, Goldstein M (2013) Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD workshop on outlier detection and description (ODD13), New York, NY, USA, pp 8–15Google Scholar
  99. 99.
    Song X, Wu M, Jermaine C, Ranka S (2007) Conditional anomaly detection. IEEE Trans Knowl Data Eng 19(5):631–645CrossRefGoogle Scholar
  100. 100.
    An W, Liang M, Liu H (2015) An improved one-class support vector machine classifier for outlier detection. Proc Inst Mech Eng C J Mech Eng Sci 229(3):580–588CrossRefGoogle Scholar
  101. 101.
    Shirazi SH, Umar AI, Naz S, Razzak MI (2016) Efficient leukocyte segmentation and recognition in peripheral blood image. Technol Health Care 24(3):335–347CrossRefGoogle Scholar
  102. 102.
    Monaghan AJ, Morin CW, Steinhoff DF, Wilhelmi O, Hayden M, Quattrochi DA, Reiskind M, Lloyd AL, Smith K, Schmidt CA, Scalf PE, Ernst K (2016) On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes Aegypti in the contiguous United States. PLoS Curr Outbreaks.  https://doi.org/10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76
  103. 103.
    Gidding SS, McGill HC Jr, McMahan CA (2008) Preventing heart disease in the 21st century: implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study. Circulation 117(9):1216–27CrossRefGoogle Scholar
  104. 104.
    Jonnagaddala J, Liaw ST, Ray P, Kumar M, Dai HJ, Hsu CY (2015) Identification and progression of heart disease risk factors in diabetic patients from longitudinal electronic health records. BioMed Res Int.  https://doi.org/10.1155/2015/636371 Google Scholar
  105. 105.
    Jitendra Jonnagaddala, Liaw S-T, Ray P, Kumar M, Chang N-W, Dai H-J (2015) Coronary artery disease risk assessment from unstructured electronic health records using text mining. J Biomed Inform 58(Supplement):S203–S210Google Scholar
  106. 106.
    Alneamy JSM, Alnaish RAH (2014) Heart disease diagnosis utilizing hybrid fuzzy wavelet neural network and teaching learning based optimization algorithm. Adv Artif Neural Syst.  https://doi.org/10.1155/2014/796323 Google Scholar
  107. 107.
    Makhtar AK, Yussof H, Al-Assadi H, Cheng Yee L, Rajeswari K, Vaithiyanathan V, Neelakantan TR (2012) International symposium on robotics and intelligent sensors 2012 (IRIS 2012) feature selection in ischemic heart disease identification using feed forward neural networks. Procedia Eng 41:1818–1823CrossRefGoogle Scholar
  108. 108.
    Arslan AK, Colak C, Sarihan ME (2016) Different medical data mining approaches based prediction of ischemic stroke. Comput Methods Progr Biomed 130:87–92CrossRefGoogle Scholar
  109. 109.
    Kunjunninair AP (2012) Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules. J King Saud Univ Comput Inf Sci 24:27–40Google Scholar
  110. 110.
    Shouman M, Turner T, Stocker R (2011) Using decision tree for diagnosing heart disease patients. In: AusDM, volume 121 of CRPIT. Australian Computer Society, pp 23–30Google Scholar
  111. 111.
    Shouman M, Turner T, Stocker R (2012) Using data mining techniques in heart disease diagnosis and treatment. In: 2012 Japan-Egypt conference on electronics, communications and computers (JEC-ECC), pp 173–177Google Scholar
  112. 112.
    Bajaja P, Choudhary K (2015) Automated prediction of RCT (root canal treatment) using data mining techniques: ICT in health care. Procedia Comput Sci 46:682–688CrossRefGoogle Scholar
  113. 113.
    NaliniPriya G, Kannan A, AnandhaKumar P (2012) A knowledgeable decision tree classification model for multivariate heart disease data-A boon to healthcare. In: Li Z, Li X, Liu Y, Cai Z (eds) ISICA, vol 316. Communications in Computer and Information Science. Springer, Berlin, pp 459–467Google Scholar
  114. 114.
    Alizadehsani R, Habibi J, Bahadorian B, Mashayekhi H, Ghandeharioun A, Boghrati R, Sani ZA (2012) Diagnosis of coronary arteries stenosis using data mining. J Med Signals Sens 2(3):153–159Google Scholar
  115. 115.
    Alizadehsani R, Habibi J, Sani ZA, Mashayekhi H, Boghrati R, Ghandeharioun A, Khozeimeh F, Alizadeh-Sani F (2013) Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features. Res Cardiovasc Med 2(3):133–139CrossRefGoogle Scholar
  116. 116.
    Karaolis MA, Moutiris JA, Hadjipanayi D, Pattichis CS (2010) Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Trans Inf Technol Biomed 14(3):559–566CrossRefGoogle Scholar
  117. 117.
    Alizadehsani R, Habibi J, Hosseini MJ, Mashayekhi H, Boghrati R, Ghandeharioun A, Bahadorian B, Sani ZA (2013) A data mining approach for diagnosis of coronary artery disease. Comput Methods Progr Biomed 111(1):52–61CrossRefGoogle Scholar
  118. 118.
    Snasel V, Alancar M, Jeloneck D, Salem AB, Valanderau L, Saleh Y, Kumar S, Theodoutou E, El-Bialy R, Salamay MA, Karam OH, Khalifa ME (2015) Feature analysis of coronary artery heart disease data sets. Procedia Comput Sci 65:459–468CrossRefGoogle Scholar
  119. 119.
    Lee J, Jaekwon K, Lee Y (2015) Data-mining-based coronary heart disease risk prediction model using fuzzy logic and decision tree. Healthc Inform Res 21(3):167–174CrossRefGoogle Scholar
  120. 120.
    Bhatla N, Jyoti K (2012) A novel approach for heart disease diagnosis using data mining and fuzzy logic. Int J Comput Appl 54(17):16–21Google Scholar
  121. 121.
    Kunjunninair AP (2012) Erratum to: “Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules and decision tree rules”. Cent Eur J Comput Sci 2(1):86Google Scholar
  122. 122.
    Yeh D-Y, Cheng C-H, Chen Y-W (2011) A predictive model for cerebrovascular disease using data mining. Expert Syst Appl 38(7):8970–8977CrossRefGoogle Scholar
  123. 123.
    Razzak MI, Alhaqbani B (2015) Automatic detection of malarial parasite using microscopic blood images. J Med Imaging Health Inform 5(3):591–598CrossRefGoogle Scholar
  124. 124.
    Razzak MI (2015) Malarial parasite classification using recurrent neural network. Int J Image Process (IJIP) 9(2):69Google Scholar
  125. 125.
    Husain W, Adnan MHM, Rashid NA (2012) Hybrid approaches using decision tree, Naive Bayes, means and euclidean distances for childhood obesity prediction. Int J Softw Eng Appl 6(3):99–106Google Scholar
  126. 126.
    Bellazzi R, Abu-Hanna A (2009) Data mining technologies for blood glucose and diabetes management. J Diabetes Sci Technol 3(3):603–612CrossRefGoogle Scholar
  127. 127.
    Breault JL, Goodall CR, Fos PJ (2002) Data mining a diabetic data warehouse. Artif Intell Med 26(1–2):37–54CrossRefGoogle Scholar
  128. 128.
    Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M (2006) Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput 44(6):451–457CrossRefGoogle Scholar
  129. 129.
    Shirazi SH, Umar AI, Haq N, Naz S, Razzak MI, Zaib A (2018) Extreme learning machine based microscopic red blood cells classification. Cluster Comput 21(1):691–701CrossRefGoogle Scholar
  130. 130.
    Cho BH, Yu H, Kim KW, Kim TH, Kim IY, Kim SI (2008) Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artif Intell Med 42(1):37–53CrossRefGoogle Scholar
  131. 131.
    Huang YC (2013) Mining association rules between abnormal health examination results and outpatient medical records. Health Inf Manag J 42(2):23–30Google Scholar
  132. 132.
    Alexander GE (2004) Biology of Parkinsons disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6(3):259–280MathSciNetGoogle Scholar
  133. 133.
    Singh N, Pillay V, Choonara YE (2007) Advances in the treatment of Parkinson’s disease. Prog Neurobiol 81(1):29–44CrossRefGoogle Scholar
  134. 134.
    Naseer A, Rani M, Naz S, Razzak MI, Imran M, Xu G (2019) Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput Appl.  https://doi.org/10.1007/s00521-019-04069-0 Google Scholar
  135. 135.
    Roberts SJ, Costello DA, Moroz IM, Little MA, McSharry PE (2007) Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed Eng Online 6:23CrossRefGoogle Scholar
  136. 136.
    Ramani RG, Sivagami G (2011) Parkinson disease classification using data mining algorithms. Int J Comput Appl 32(9):17–22Google Scholar
  137. 137.
    Kunjunninair AP (2015) Classification of Parkinsons disease using data mining techniques. J Parkinsons Dis Alzheimer Dis 2(1):4Google Scholar
  138. 138.
    Suganya P, Sumathi CP (2014) A novel metaheuristic data mining algorithm for the detection and classification of Parkinson disease. Indian J Sci Technol 8:1Google Scholar
  139. 139.
    Kusiak A, Dixon B, Shah S (2005) Predicting survival time for kidney dialysis patients: a data mining approach. Comput Biol Med 35(4):311–327CrossRefGoogle Scholar
  140. 140.
    Tsao C-W, Yeh J-Y, Wu T-H (2011) Using data mining techniques to predict hospitalization of hemodialysis patients. Decis Support Syst 50(2):439–448CrossRefGoogle Scholar
  141. 141.
    Raju D, Xiaogang S, Patrician PA, Loan LA, McCarthy MS (2015) Exploring factors associated with pressure ulcers: a data mining approach. Int J Nurs Stud 52(1):102–111CrossRefGoogle Scholar
  142. 142.
    Belanger AJ, Wolf PA, D’Agostino RB, Kannel WB (1991) Probability of stroke: a risk profile from the Framingham study. Stroke 22:312–318CrossRefGoogle Scholar
  143. 143.
    Khosla A, Cao Y, Lin CCY, Chiu HK, Hu J, Lee H (2010) An integrated machine learning approach to stroke prediction. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 183–192Google Scholar
  144. 144.
    Sung S-F, Hsieh C-Y, Yang Y-HK, Lin H-J, Chen C-H, Chen Y-W, Hu Y-H (2015) Developing a stroke severity index based on administrative data was feasible using data mining techniques. J Clin Epidemiol 68(11):1292–1300CrossRefGoogle Scholar
  145. 145.
    Easton JF, Stephens CR, Angelova M (2014) Risk factors and prediction of very short term versus short/intermediate term post-stroke mortality: a data mining approach. Comput Biol Med 54:199–210 (2014)CrossRefGoogle Scholar
  146. 146.
    Baitharu TR, Pani SK (2016) Analysis of data mining techniques for healthcare decision support system using liver disorder dataset. Procedia Comput Sci 85:862–870CrossRefGoogle Scholar
  147. 147.
    Yasin H, Jilani TA, Danish M (2011) Hepatitis-C classification using data mining techniques. Int J Comput Appl 24(3):1–6Google Scholar
  148. 148.
    Zayed N, Awad AB, El-Akel W, Doss W, Awad T, Radwan A, Mabrouk M (2013) The assessment of data mining for the prediction of therapeutic outcome in 3719 Egyptian patients with chronic hepatitis c. Clin Res Hepat Gastroenterol 37(3):254–261CrossRefGoogle Scholar
  149. 149.
    Yang ZR (2005) Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection. Bioinformatics 21(11):2644–2650CrossRefGoogle Scholar
  150. 150.
    Lee S, Kim Y, Kang J, Oh J, Baek J, Yoon T (2014) Prediction of SARS coronavirus main protease by support vector machine. In: International proceedings of computer science and information technology, vol 59, p 185Google Scholar
  151. 151.
    Sandhu R, Sood SK, Kaur G (2016) An intelligent system for predicting and preventing MERS-CoV infection outbreak. J Supercomput 72(8):3033–3056CrossRefGoogle Scholar
  152. 152.
    Xu Q, Wang H, Zhou L (2014) Seminal quality prediction using clustering-based decision forests. Algorithms 7:405–417CrossRefGoogle Scholar
  153. 153.
    Sahoo AJ, Kumar Y (2014) Seminal quality prediction using data mining methods. Technol Health Care 22(4):531–545MathSciNetGoogle Scholar
  154. 154.
    Gil D, Girela JL, De Juan J, Gomez-Torres MJ, Johnsson M (2012) Predicting seminal quality with artificial intelligence methods. Expert Syst Appl 39(16):12564–12573CrossRefGoogle Scholar
  155. 155.
    Maeemr M (2014) Etiological evaluation of seminal traits using Bayesian belief. Int J Biosci Biotechnol 6(6):79–86Google Scholar
  156. 156.
    Johnsson M, Gomez-Torres MJ, Girela JL, Gil D, De JJ (2014) Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. Biol Reprod 88(4):99Google Scholar
  157. 157.
    Snowden S, Smye SW, Sharma V, Kaufmann SJ, Eastaugh JL (1997) The application of neural network in predicting the outcome of in-vitro fertilization. Hum Reprod 12(7):1454–1457CrossRefGoogle Scholar
  158. 158.
    Corani G, Magli C, Giusti A, Gianaroli L, Gambardella LM (2013) A Bayesian network model for predicting pregnancy after in vitro fertilization. Comput Biol Med 43(11):1783–1792CrossRefGoogle Scholar
  159. 159.
    Ciray HN, Bahceci M, Uyar A, Bener A (2009) Predicting implantation outcome from imbalanced IVF dataset. In: Proceedings of the World Congress on engineering and computer science, San Francisco, USA. WCECS, pp 562–567Google Scholar
  160. 160.
    Uyar A, Bener A, Ciray HN, Bahceci M (2010) ROC Based evaluation and comparison of classifiers for IVF implantation prediction. Springer, Berlin, pp 108–111Google Scholar
  161. 161.
    Chrelias C, Kassanos D, Siristatidis C, Pouliakis A (2011) Artificial intelligence in IVF: a need. Syst Biol Reprod Med 57(4):179–185CrossRefGoogle Scholar
  162. 162.
    Pouliakis A, Trivella M, Papantoniou N, Bettocchi S, Siristatidis C, Vogiatzi P (2016) Predicting IVF outcome: a proposed web-based system using artificial intelligence. Vivo 30(4):07–08Google Scholar
  163. 163.
    Durairaj M, NandhaKumar R (2013) Data mining application on ivf data for the selection of influential parameters on fertility. Int J Eng Adv Technol (IJEAT) 6(2):262–266Google Scholar
  164. 164.
    Durairaj M, Nandhakumar R (2014) An integrated methodology of artificial neural network and rough set theory for analyzing IVF data. In: 2014 international conference on intelligent computing applications (ICICA), Coimbatore. IEEE, pp 126–129Google Scholar
  165. 165.
    Dilbaz S, Ozdegirmenci O, Demir B, Dilbaz B, Güvenir HA, Misirli G (2015) Estimating the chance of success in IVF treatment using a ranking algorithm. Med Biol Eng Comput 53:911–920CrossRefGoogle Scholar
  166. 166.
    de Barros GP, de Paula LS, Bartmann AK, Faria M, Bettini NR (2013) The number of embryos obtained can offset the age factor in IVF results according to an artificial intelligence system. Womens Health Gynecol 2(5):17–19Google Scholar
  167. 167.
    Ziniewicz P, Milewska AJ, Czerniecki J, Woczyski S, Malinowski P, Milewski R (2014) The use of data mining methods to predict the result of infertility treatment using the IVF ET method. Stud Logic Gramm 39(52):67–74Google Scholar
  168. 168.
    Luo Y, Li J-Q, Zheng D-W, Tan Z-P, Zhou H, Deng Q-P, Liu Y-T, Ou A, Yin J (2011) Application of data mining technology in excavating prevention and treatment experience of infectious diseases from famous herbalist doctors. In: 2011 IEEE international conference on bioinformatics and biomedicine workshops (BIBMW). IEEE, pp 784–790Google Scholar
  169. 169.
    Kabir E, Siuly S, Cao J, Wang H (2018) A computer aided analysis scheme for detecting epileptic seizure from EEG data. Int J Comput Intell Syst 11:663–671CrossRefGoogle Scholar
  170. 170.
    Kaushik K, Kapoor D, Varadharajan V, Nallusamy R (2014) Disease management: clustering-based disease prediction. Int J Collab Enterp 4(1–2):69–82CrossRefGoogle Scholar
  171. 171.
    Vijayarani S, Sudha S (2015) An efficient clustering algorithm for predicting diseases from hemogram blood test samples. Indian J Sci Technol 8(17):1CrossRefGoogle Scholar
  172. 172.
    Norouzi J, Yadollahpour A, Mirbagheri SA, Mazdeh MM, Hosseini SA (2016) Predicting renal failure progression in chronic kidney disease using integrated intelligent fuzzy expert system. Comput Math Methods Med.  https://doi.org/10.1155/2016/6080814 Google Scholar
  173. 173.
    Feng Y, Wang Y, Guo F, Xu H (2014) Applications of data mining methods in the integrative medical studies of coronary heart disease: progress and prospect. Evid Based Complement Alternat Med.  https://doi.org/10.1155/2014/791841 Google Scholar
  174. 174.
    Yang J, Si J, Gu X, Shi O (2013) Fuzzy cluster analysis of Alzheimer's disease-related gene sequences. Engineering 5(10):530CrossRefGoogle Scholar
  175. 175.
    Shaukat K, Masood N, Shafaat AB, Jabbar K, Shabbir H, Shabbir S (2015) Dengue fever in perspective of clustering algorithms. arXiv preprint arXiv:1511.07353
  176. 176.
    Shouman M, Turner T, Stocker R (2012) Integrating Naive Bayes and k-means clustering with different initial centroid selection methods in the diagnosis of heart disease patients. In: CS & IT-CSCP, pp 125–137Google Scholar
  177. 177.
    Zheng B, Yoon SW, Lam SS (2014) Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms. Expert Syst Appl 41(4):1476–1482CrossRefGoogle Scholar
  178. 178.
    Ogasawara M, Sugimori H, Iida Y, Yoshida K (2005) Analysis between lifestyle, family medical history and medical abnormalities using data mining method—association rule analysis. In: International conference on knowledge-based and intelligent information and engineering systems. Springer, pp 161–171Google Scholar
  179. 179.
    Semenova T, Hegland M, Graco W, Williams G (2001) Effectiveness of mining association rules for identifying trends in large health databases. In: Workshop on integrating data mining and knowledge management, vol 1. ICDM, p 19Google Scholar
  180. 180.
    Ravi SS, David C, Torney S, Doddi AM (2001) Discovery of association rules in medical data. Med Inform Internet Med 26(1):25–33CrossRefGoogle Scholar
  181. 181.
    Payus C, Sulaiman N, Shahani M, Bakar AA (2013) Association rules of data mining application for respiratory illness by air pollution database. Int J Basic Appl Sci 13(3):11–16Google Scholar
  182. 182.
    Concaro S, Sacchi L, Cerra C, Stefanelli M, Fratino P, Bellazzi R (2009) Temporal data mining for the assessment of the costs related to diabetes mellitus pharmacological treatment. In: AMIAGoogle Scholar
  183. 183.
    Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R (2009) Mining healthcare data with temporal association rules: improvements and assessment for a practical use. In: Conference on artificial intelligence in medicine in Europe. Springer, pp 16–25Google Scholar
  184. 184.
    Jabbar MA, Chandra P, Deekshatulu BL (2012) Knowledge discovery from mining association rules for heart disease prediction. J Theor Appl Inf Technol 41(2):45–53Google Scholar
  185. 185.
    Raheja V, Rajan KS (2012) Comparative study of association rule mining and MiSTIC in extracting spatio-temporal disease occurrences patterns. In: 2012 IEEE 12th international conference on data mining workshops. IEEE, pp 813–820Google Scholar
  186. 186.
    Lee DG, Ryu KS, Bashir M, Bae J-W, Ryu KH (2013) Discovering medical knowledge using association rule mining in young adults with acute myocardial infarction. J Med Syst 37(2):1–10Google Scholar
  187. 187.
    Nahar J, Imam T, Tickle KS, Chen Y-PP (2013) Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst Appl 40(4):1086–1093CrossRefGoogle Scholar
  188. 188.
    Anwar MA, Ahmed N (2014) Analyzing lifestyle and environmental factors on semen fertility using association rule mining. Inf Knowl Manag 3(4):79–86Google Scholar
  189. 189.
    Sharma N, Om H (2014) Significant patterns for oral cancer detection: association rule on clinical examination and history data. Netw Model Anal Health Inform Bioinform 3(1):1–13MathSciNetCrossRefGoogle Scholar
  190. 190.
    Berka P, Rauch J (2010) Mining and post-processing of association rules in the atherosclerosis risk domain. In: Information technology in bio-and medical informatics, ITBAM 2010. Springer, pp 110–117Google Scholar
  191. 191.
    McCormick T, Rudin C, Madigan D (2011) A hierarchical model for association rule mining of sequential events: an approach to automated medical symptom prediction. SSRN Electron J.  https://doi.org/10.2139/ssrn.1736062Google Scholar
  192. 192.
    Srinivasan S, Ramakrishnan S (2011) Evolutionary multi objective optimization for rule mining: a review. Artif Intell Rev 36(3):205–248CrossRefGoogle Scholar
  193. 193.
    Ordonez C, Ezquerra N, Santana CA (2006) Constraining and summarizing association rules in medical data. Knowl Inf Syst 9(3):1–2CrossRefGoogle Scholar
  194. 194.
    Ohsaki M, Abe H, Tsumoto S, Yokoi H, Yamaguchi T (2007) Evaluation of rule interestingness measures in medical knowledge discovery in databases. Artif Intell Med 41(3):177–196CrossRefGoogle Scholar
  195. 195.
    Kuo Y-T, Lonie A, Pearce AR, Sonenberg L (2014) Mining surprising patterns and their explanations in clinical data. Appl Artif Intell 28(2):111–138CrossRefGoogle Scholar
  196. 196.
    Soni S, Vyas OP (2010) Using associative classifiers for predictive analysis in health care data mining. Int J Comput Appl 4(5):33–37Google Scholar
  197. 197.
    Soni J, Ansari U, Sharma D, Soni S (2011) Intelligent and effective heart disease prediction system using weighted associative classifiers. Int J Comput Sci Eng 3(6):2385–2392Google Scholar
  198. 198.
    Rajendran P, Madheswaran M (2010) An improved image mining technique for brain tumour classification using efficient classifier. arXiv preprint arXiv:1001.1988
  199. 199.
    Shirisha Y, Rao SSS, Sujatha D (2012) Data mining with predictive analysis for healthcare sector: an improved weighted associative classification approach. Glob J Comput Sci Technol 11(22):31–36Google Scholar
  200. 200.
    Chin YC, Weng MY, Lin TC, Cheng SY, Yang YHK, Tseng VS (2015) Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk. PLoS ONE 10(4):e0122508CrossRefGoogle Scholar
  201. 201.
    Carvalho FM, Teixeira HC, Dias EC, Meira W, Carvalho O (2015) A simple and effective method for anomaly detection in healthcare. In: 4th workshop on data mining for medicine and healthcare, 2015 SIAM international conference on data mining, Vancouver, CanadaGoogle Scholar
  202. 202.
    Hu J, Wang F, Sun J, Sorrentino R, Ebadollahi S (2012) A healthcare utilization analysis framework for hot spotting and contextual anomaly detection. In: AMIA. AMIAGoogle Scholar
  203. 203.
    Mezger J, Visweswaran S, Hauskrecht M, Clermont G, Cooper GF (2007) A statistical approach for detecting deviations from usual medical care. In: AMIA annual symposium proceedings, p 1051Google Scholar
  204. 204.
    Hauskrecht M, Valko M, Kveton B, Visweswaran S, Cooper GF (2007) Evidence-based anomaly detection in clinical domains. In: Annual American medical informatics association symposium, pp 319–324Google Scholar
  205. 205.
    Valko M, Cooper G, Seybert A, Visweswaran S, Saul M, Hauskrecht M (2008) Conditional anomaly detection methods for patient-management alert systems. In: Proceedings of the international conference on machine learning, vol 2008. NIH Public AccessGoogle Scholar
  206. 206.
    Hauskrecht M, Visweswaran S, Cooper GF, Clermont G (2013) Conditional outlier approach for detection of unusual patient care actions. In: AAAI (late-breaking developments), volume WS-13-17 of AAAI workshops. AAAIGoogle Scholar
  207. 207.
    Milos H, Michal V, Iyad B, Gilles C, Shyam V, Gregory C (2010) Conditional outlier detection for clinical alerting. In: AMIA annual symposium proceedings 2010, pp 286–90Google Scholar
  208. 208.
    Hong C, Hauskrecht M (2016) Multivariate conditional outlier detection and its clinical application. In: Schuurmans D, Wellman MP (eds) AAAI. AAAI Press, Menlo Park, pp 4216–4217Google Scholar
  209. 209.
    Batal I, Hong C, Hauskrecht M (2015) A generalized mixture framework for multi-label classification. In: SIAM data mining conference (SDM). SIAMGoogle Scholar
  210. 210.
    Harrou F, Kadri F, Chaabane S, Tahon C, Sun Y (2015) Improved principal component analysis for anomaly detection: application to an emergency department. Comput Ind Eng 88:63–77CrossRefGoogle Scholar
  211. 211.
    Kwon C-B, Lee H-J, Oh J, Ban S-W (2016) Emergent cardiac anomaly classification using cascaded autoassociative multilayer perceptrons for bio-healthcare systems. Int J Bio-Sci Bio-Technol 8:351–362CrossRefGoogle Scholar
  212. 212.
    Antonelli D, Bruno G, Chiusano S (2013) Anomaly detection in medical treatment to discover unusual patient management. IIE Trans Healthc Syst Eng 3(2):69–77CrossRefGoogle Scholar
  213. 213.
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ch IP, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRefGoogle Scholar
  214. 214.
    Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. University of California, Irvine, CA. School of Information and Computer Science, 213
  215. 215.
    Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, OLeary DH, Psaty B, Rautaharju P, Tracy RP, Fried LP, Borhani NO, Weiler PG (1991) The cardiovascular health study: design and rationale. Ann Epidemiol 1(3):263–276CrossRefGoogle Scholar
  216. 216.
    Kveton B, Visweswaran S, Cooper GF, Hauskrecht M, Valko M (2007) Evidence-based anomaly detection. In: Proceedings of annual American medical informatics association symposium). AAAI, pp 319–324Google Scholar
  217. 217.
    Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN (2014) Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed Res Int.  https://doi.org/10.1155/2014/781670 Google Scholar
  218. 218.
    Ghamdi HA, Alshammari R, Razzak MI (2016) An ontology-based system to predict hospital readmission within 30 days. Int J Healthc Manag 9(4):236–244CrossRefGoogle Scholar
  219. 219.
    Al-Qarny ZA, Alshammari R, Razzak MI (2015) Impact of sharing health information related to diabetes through the social media network: ontology. Int J Behav Healthc Res 5(3–4):162–171CrossRefGoogle Scholar
  220. 220.
    Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN, Strack B, DeShazo JP (2014) Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed Res Int.  https://doi.org/10.1155/2014/781670 Google Scholar
  221. 221.
    Asuncion A, Newman D (2007) UCI machine learning repositoryGoogle Scholar
  222. 222.
    Babu MSP, Ramana BV, Venkateswarlu NB (2012) A critical comparative study of liver patients from USA and India: an exploratory analysis. Int J Comput Sci 9:506Google Scholar
  223. 223.
    Valko M, Hauskrecht M (2008) Distance metric learning for conditional anomaly detection. In: FLAIRS conference, pp 684–689Google Scholar
  224. 224.
    Green S, Vogt H (2016) Personalizing medicine: Disease prevention in silico and in socio. Humana Mente J Philos Stud 9:105–145Google Scholar
  225. 225.
    Hood L, Galas D (2008) P4 medicine: personalized, predictive, preventive, participatory a change of view that changes everything. Computing Community Consortium, WashingtonGoogle Scholar
  226. 226.
    Sweeney L (2002) Achieving k-anonymity privacy protection using generalization and suppression. Int J Uncertain Fuzziness Knowl Based Syst 10(5):571–588MathSciNetzbMATHCrossRefGoogle Scholar
  227. 227.
    Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2(1):3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Analytics InstituteUniversity of TechnologySydneyAustralia
  2. 2.College of Applied Computer ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations