Advertisement

Inferring region significance by using multi-source spatial data

  • Shunzhi Zhu
  • Dahan WangEmail author
  • Lijuan Liu
  • Yan Wang
  • Danhuai Guo
Multi-Source Data Understanding (MSDU)

Abstract

The ranking and recommendation of regions of interest are increasingly important in recent years. In this light, we propose and study a novel and interesting problem of inferring region significance using multi-source spatiotemporal data. In our study, POIs, locations, regions, trajectories, and spatial networks are taken into account. Given a set of regions R and a set of trajectories T, we seek for the top-k most attractive regions to users, i.e., regions with the top-k highest spatial-density correlations to the trajectories of travelers. This study is useful in many mobile applications such as urban computing, region recommendation, and location-based service in general. This problem is challenging due to two reasons: (1) how to model the spatial-density correlation effectively and practically and (2) how to process the problem in interactive time. To overcome the challenges, we design a novel spatial-density correlation function to evaluate the relationship between regions and trajectories, and the density of POIs and network distance are taken into account. Then, we develop a series of optimization techniques to accelerate the query efficiency. Furthermore, we develop a parallel mechanism to support big spatial data. Finally, we conduct extensive experiments on real and synthetic spatial data sets to show the efficiency and effectiveness of developed algorithms.

Keywords

Region Trajectory Density Recommendation Ranking Spatial data mining 

List of symbols

\(G\cdot V\)

The set of vertices in graph G

\(G\cdot E\)

The set of edges in graph G

C

The set of regions

T

The set of trajectories

c

A region

\(c\cdot o\)

The center of region c

\(\tau\)

A trajectory

\(\lambda\)

A significance parameter of spatial and density domains

\(\theta\)

A threshold

\({\text{sd}}()\)

Network shortest path distance

\(d(c,\tau )\)

Network distance between region c and trajectory \(\tau\)

\(d(c,\tau )\cdot {\text{lb}}\)

The lower bound network distance between region c and trajectory \(\tau\)

\(C_{{\text{sd}}}()\)

Spatial-density correlation

\(C_{{\text{sd}}}()\cdot {\text{ub}}\)

The upper bound of spatial-density correlation

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672442), the Science and Technology Planning Project of Fujian Province (No. 2016Y0079), and the Science and Technology Planning Project of Xiamen/Quanzhou City (Nos. 3502Z20183055, 2017G030).

References

  1. 1.
    Bakalov P, Hadjieleftheriou M, Keogh EJ, Tsotras VJ (2005) Efficient trajectory joins using symbolic representations. In: MDM, pp 86–93Google Scholar
  2. 2.
    Bakalov P, Tsotras VJ (2006) Continuous spatiotemporal trajectory joins. In: GSN, pp 109–128Google Scholar
  3. 3.
    Brakatsoulas S, Pfoser D, Salas R, Wenk C (2005) On map-matching vehicle tracking data. In: VLDB, pp 853–864Google Scholar
  4. 4.
    Chen Y, Patel JM (2009) Design and evaluation of trajectory join algorithms. In: ACM-GIS, pp 266–275Google Scholar
  5. 5.
    Dijkstra EW (1959) A note on two problems in connection with graphs. Numerische Math 1:269–271MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding H, Trajcevski G, Scheuermann P (2008) Efficient similarity join of large sets of moving object trajectories. In: TIME, pp 79–87Google Scholar
  7. 7.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp 47–57Google Scholar
  8. 8.
    Lei C, Zhu X (2017) Unsupervised feature selection via local structure learning and sparse learning. Multimed Tools Appl 77(22):29605–29622CrossRefGoogle Scholar
  9. 9.
    Li J, Wang Y, Guo YZD, Zhu S (2018) Aggregate location recommendation in dynamic transportation networks. World Wide Web 21(6):1637–1653CrossRefGoogle Scholar
  10. 10.
    Luo W, Tan H, Chen L, Ni LM (2013) Finding time period-based most frequent path in big trajectory data. In: SIGMOD, pp 713–724Google Scholar
  11. 11.
    Papadias D, Shen Q, Tao Y, Mouratidis K (2004) Group nearest neighbor queries. In: ICDE, pp 301–312Google Scholar
  12. 12.
    Papadias D, Tao Y, Mouratidis K, Hui CK (2005) Aggregate nearest neighbor queries in spatial databases. TODS 30(2):529–576CrossRefGoogle Scholar
  13. 13.
    Shang S, Chen L, Jensen CS, Wen J-R, Kalnis P (2017) Searching trajectories by regions of interest. IEEE Trans Knowl Data Eng 29(7):1549–1562CrossRefGoogle Scholar
  14. 14.
    Shang S, Chen L, Wei Z, Jensen CS, Wen J, Kalnis P (2016) Collective travel planning in spatial networks. IEEE Trans Knowl Data Eng 28(5):1132–1146CrossRefGoogle Scholar
  15. 15.
    Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial networks. PVLDB 10(11):1178–1189Google Scholar
  16. 16.
    Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. VLDB J 27(3):395–420CrossRefGoogle Scholar
  17. 17.
    Shang S, Deng K, Xie K (2010) Best point detour query in road networks. In: ACM GIS, pp 71–80Google Scholar
  18. 18.
    Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P (2012) User oriented trajectory search for trip recommendation. In: EDBT, pp 156–167Google Scholar
  19. 19.
    Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. VLDB J 23(3):449–468CrossRefGoogle Scholar
  20. 20.
    Shang S, Guo D, Liu J, Liu K (2014) Human mobility prediction and unobstructed route planning in public transport networks. In: MDM, pp 43–48Google Scholar
  21. 21.
    Shang S, Lu H, Pedersen TB, Xie X (2013) Finding traffic-aware fastest paths in spatial networks. In: SSTD, pp 128–145Google Scholar
  22. 22.
    Shang S, Lu H, Pedersen TB, Xie X (2013) Modeling of traffic-aware travel time in spatial networks. In: MDM, pp 247–250Google Scholar
  23. 23.
    Shang S, Yuan B, Deng K, Xie K, Zhou X (2011) Finding the most accessible locations: reverse path nearest neighbor query in road networks. In: ACM GIS, pp 181–190Google Scholar
  24. 24.
    Shang S, Zheng K, Jensen CS, Yang B, Kalnis P, Li G, Wen J (2015) Discovery of path nearby clusters in spatial networks. IEEE Trans Knowl Data Eng 27(6):1505–1518CrossRefGoogle Scholar
  25. 25.
    Ta N, Li G, Feng J (2017) Signature-based trajectory similarity join. IEEE Trans Knowl Data Eng 29(4):870–883CrossRefGoogle Scholar
  26. 26.
    Wang Y, Li J, Zhong Y, Zhu S, Guo D, Shang S (2018) Discovery of accessible locations using region-based geo-social data. World Wide Web.  https://doi.org/10.1007/s11280-018-0538-5 Google Scholar
  27. 27.
    Wenk C, Salas R, Pfoser D (2006) Addressing the need for map-matching speed: localizing global curve-matching algorithms. In: SSDBM, pp 379–388Google Scholar
  28. 28.
    Yao B, Chen Z, Gao X, Shang S, Ma S, Guo M (2018) Flexible aggregate nearest neighbor queries in road networks. In: ICDE, pp 1–12Google Scholar
  29. 29.
    Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J (2018) Unsupervised feature selection by self-paced learning regularization. Pattern Recognit Lett.  https://doi.org/10.1016/j.patrec.2018.06.029 Google Scholar
  30. 30.
    Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimed Tools Appl 77(22):29739–29755CrossRefGoogle Scholar
  31. 31.
    Zhu S, Wang Y, Shang S, Zhao G, Wang J (2017) Probabilistic routing using multimodal data. Neurocomputing 253:49–55CrossRefGoogle Scholar
  32. 32.
    Zhu X, Zhang S, Hu R, Zhu Y, Song J (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529CrossRefGoogle Scholar
  33. 33.
    Zhu X, Zhang S, Li Y, Zhang J, Yang L, Fang Y (2018) Low-rank sparse subspace for spectral clustering. IEEE Trans Knowl Data Eng.  https://doi.org/10.1109/TKDE.2018.2858782 Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Shunzhi Zhu
    • 1
  • Dahan Wang
    • 1
    Email author
  • Lijuan Liu
    • 1
  • Yan Wang
    • 1
  • Danhuai Guo
    • 2
  1. 1.School of Computer and Information EngineeringXiamen University TechnologyXiamenChina
  2. 2.CNICChinese Academy of SciencesBeijingChina

Personalised recommendations