Density-based semi-supervised online sequential extreme learning machine

  • Min XiaEmail author
  • Jie Wang
  • Jia Liu
  • Liguo Weng
  • Yiqing Xu
Hybrid Artificial Intelligence and Machine Learning Technologies


This paper proposes a density-based semi-supervised online sequential extreme learning machine (D-SOS-ELM). The proposed method can realize online learning of unlabeled samples chunk by chunk. Local density and distance are used to measure the similarity of patterns, and the patterns with high confidence are selected by the ‘follow’ strategy for online learning, which can improve the accuracy of learning. Through continuous patterns selection, the proposed method ultimately achieves effective learning of unlabeled patterns. Furthermore, using local density and relative distance can effectively respond to the relationship between patterns. Compared with the traditional distance-based similarity measure, the ability to deal with complex data is improved. Empirical study on several standard benchmark data sets demonstrates that the proposed D-SOS-ELM model outperforms state-of-art methods in terms of accuracy.


Semi-supervised learning Extreme learning machine Online sequential learning Fast density clustering 



This work is supported in part by, the National Natural Science Foundation of PR China (61773219, 61503192), Natural Science Foundation of Jiangsu Province (BK20161533), and Qing Lan Project of Jiangsu Province.


  1. 1.
    Mackay DJC (2014) A practical Bayesian framework for backpropagation networks. Neural Comput 4(3):448–472MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sarabakha A, Imanberdiyev N, Kayacan E et al (2017) Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles. Inf Sci 416:361–380CrossRefGoogle Scholar
  3. 3.
    Ding S, Xu X, Nie R (2014) Extreme learning machine and its applications. Neural Comput Appl 25(3–4):549–556CrossRefGoogle Scholar
  4. 4.
    Xue J, Zhou SH, Liu Q et al (2018) Financial time series prediction using l2, 1 RF-ELM. Neurocomputing 277(14):176–186CrossRefGoogle Scholar
  5. 5.
    Yang C, Huang K, Cheng H et al (2017) Haptic identification by ELM-controlled uncertain manipulator. IEEE Trans Syst Man Cybern Syst 47(8):2398–2409CrossRefGoogle Scholar
  6. 6.
    Martinez-Garcia JA, Sancho-Gomez JL (2018) Performance analysis of No-Propagation and ELM algorithms in classification. Neural Comput Appl 10–12:1–11Google Scholar
  7. 7.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRefGoogle Scholar
  8. 8.
    Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390CrossRefGoogle Scholar
  9. 9.
    Li X, Mao W, Jiang W (2016) Multiple-kernel-learning-based extreme learning machine for classification design. Neural Comput Appl 27(1):175–184CrossRefGoogle Scholar
  10. 10.
    Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B 42(2):513–529CrossRefGoogle Scholar
  11. 11.
    Zou W, Yao F, Zhang B et al (2017) Improved Meta-ELM with error feedback incremental ELM as hidden nodes. Neural Comput Appl 8:1–8Google Scholar
  12. 12.
    Liang NY, Huang GB, Saratchandran P et al (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRefGoogle Scholar
  13. 13.
    Zhao J, Wang Z, Dong SP (2012) Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 87(15):79–89CrossRefGoogle Scholar
  14. 14.
    Scardapane S, Comminiello D, Scarpiniti M et al (2015) Online sequential extreme learning machine with kernels. IEEE Trans Neural Netw Learn Syst 26(9):2214–2220MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zou QY, Wang XJ, Zhou CJ et al (2018) The memory degradation based online sequential extreme learning machine. Neurocomputing 275:2864–2879CrossRefGoogle Scholar
  16. 16.
    Wang B, Huang S, Qiu J et al (2015) Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 149(PA):224–232CrossRefGoogle Scholar
  17. 17.
    Huang G, Song S, Gupta JN et al (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417CrossRefGoogle Scholar
  18. 18.
    Liu S, Feng L, Wang H et al (2016) Extend semi-supervised ELM and a frame work. Neural Comput Appl 27(1):205–213CrossRefGoogle Scholar
  19. 19.
    Krishnasamy G, Paramesran R (2016) Hessian semi-supervised extreme learning machine. Neurocomputing 207(C):560–567CrossRefGoogle Scholar
  20. 20.
    Bisio F, Decherchi S, Gastaldo P et al (2016) Inductive bias for semi-supervised extreme learning machine. Neurocomputing 174(PA):154–167CrossRefGoogle Scholar
  21. 21.
    Yi Y, Qiao S, Zhou W et al (2018) Adaptive multiple graph regularized semi-supervised extreme learning machine. Soft Comput 22(6):1–18zbMATHGoogle Scholar
  22. 22.
    Jia X, Wang R, Liu J et al (2016) A semi-supervised online sequential extreme learning machine method. Neurocomputing 174(PA):168–178CrossRefGoogle Scholar
  23. 23.
    Olivier C, Scholkopf B, Alexander Z (2006) A discussion of semi-supervised learning and transduction. In: Semi-supervised learning. MIT Press, New YorkCrossRefGoogle Scholar
  24. 24.
    Kawakita M, Kanamori T (2013) Semi-supervised learning with density-ratio estimation. Mach Learn 91(2):189–209MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Soares RGF, Chen H, Yao X (2018) Efficient cluster-based boosting for semisupervised classification. IEEE Trans Neural Netw Learn Syst 2018(99):1–14MathSciNetGoogle Scholar
  26. 26.
    Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492CrossRefGoogle Scholar
  27. 27.
    Jain A, Law M (2005) Data clustering: a user’s dilemma. Lect Notes Comput Sci 3776:1–10CrossRefGoogle Scholar
  28. 28.
    Fu L, Medico E (2007) FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform 8(1):3CrossRefGoogle Scholar
  29. 29.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRefGoogle Scholar
  30. 30.
    Pedregosa F, Gramfort A, Michel V et al (2013) Scikit-learn: machine learning in Python. J Mach Learn Res 12(10):2825–2830MathSciNetzbMATHGoogle Scholar
  31. 31.
    Nigam K, Mccallum A, Mitchell TM (2006) Semi-supervised text classification using EM. AIAA J 36(36):62–68Google Scholar
  32. 32.
    Lin F, Cohen WW (2010) Semi-supervised classification of network data using very few labels. In: International conference on advances in social networks analysis and mining, pp 192–199Google Scholar
  33. 33.
    Cheung E, Li Y (2017) Self-training with adaptive regularization for S3VM. In: 2017 international joint conference on neural networks (IJCNN), Anchorage, AK, pp 3633–3640Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Atmospheric Environment and Equipment TechnologyNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Big Data Analysis TechnologyNanjing University of Information Science and TechnologyNanjingChina
  3. 3.College of Information Science and TechnologyNanjing Forestry UniversityNanjingChina

Personalised recommendations